Math 366, Quiz 2

NAME:
1a (3 points) For the matrix

$$
\left(\begin{array}{ll}
3 & -5 \\
1 & -1
\end{array}\right)
$$

write the characteristic equation and find eigenvalues.
1b (3 points) For the same matrix, find two inearly independent eigenvectors.

Solution. The characteristic equation is

$$
\lambda^{2}-2 \lambda+2=0
$$

Solutions are

$$
\lambda_{1,2}=1 \pm \sqrt{1-2}=1 \pm i .
$$

Equations for eigenvectors for $\lambda_{1}=1+i$ are

$$
(2-i) v_{1}-5 v_{2}=0, \quad v_{1}-(2+i) v_{2}=0,
$$

They are satisfied if we take $\left(v_{1}, v_{2}\right)=(2+i, 1)$. Then an eigenvector correspomnding to $\lambda_{2}=1-i$ is $(2-i, 1)$.
2. (4 points) Compute the real and imaginary parts:

$$
\left(\frac{1+i}{1-i}\right)^{2015}
$$

Solution.

$$
\frac{1+i}{1-i}=\frac{(1+i)^{2}}{(1-i)(1+i)}=\frac{2 i}{2}=i .
$$

Now 2015 has remainder 3 when divided by 4, so $i^{2015}=-i$.

