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Abstract

We consider transcendental entire functions of finite order for which the

zeros and 1-points are in disjoint sectors. Under suitable hypotheses on the

sizes of these sectors we show that such functions must have a specific form,

or that such functions do not exist at all.
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1 Introduction and results

Our starting point is the following result of Biernacki [3, p. 533].

Theorem A. There is no transcendental entire function of finite order for which

the zeros accumulate in one direction and the 1-points accumulate in a different

direction.

Here we say that a set {an} of complex numbers accumulates in one direction
if there exists a ray such that for every open sector bisected by this ray all but
finitely many an lie in this sector.

We will prove the following generalizations of Theorem A.

Theorem 1.1. Let S0 and S1 be closed sectors in C satisfying S0 ∩ S1 = {0}. Let

θj denote the opening angle of Sj and suppose that

min{θ0, θ1} <
π

2
and max{θ0, θ1} < π.

∗Supported by NSF grant DMS-1665115.
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Then there is no transcendental entire function of finite order for which all but

finitely many zeros are in S0 while all but finitely many 1-points are in S1.

Theorem 1.2. Let S be a closed sector in C of opening angle less than π/3 and let

H be a closed half-plane intersecting S only in 0. Let f be a transcendental entire

function of finite order. Suppose that all but finitely many zeros of f are in S while

all but finitely many 1-points are in H. Then f has the form f(z) = P (z)eaz where

P is a polynomial and a ∈ C.

The following examples show that the hypotheses of Theorems 1.1 and 1.2 are
sharp. We will verify in Section 2 that these examples have the stated properties.

Our first example shows that the condition min{θ0, θ1} < π/2 in Theorem 1.1
cannot be relaxed to min{θ0, θ1} ≤ π/2.

Example 1.1. Let

f(z) :=
2√
π

∫ z

0

t2 exp
(

−t2
)

dt+
1

2
.

Then all but finitely many zeros of f are in {z : | arg z| ≤ π/4} while all but finitely
many 1-points of f are in {z : | arg z − π| ≤ π/4}.

The exponential function shows that the condition max{θ0, θ1} < π in Theo-
rem 1.1 cannot be relaxed to max{θ0, θ1} ≤ π. This is also shown by the following
example, which has infinitely many zeros and 1-points. This example also shows
that the conclusion of Theorem 1.2 does not hold if S has opening angle equal
to π/3.

Example 1.2. Let a and b be defined by

a

∫ ∞

0

t3 exp
(

−t3
)

dt =
1

3
and b

∫ ∞

0

t exp
(

−t3
)

dt =
1

3
.

Let

f(z) :=

∫ z

0

(at3 + bt) exp
(

−t3
)

dt+
1

3
.

Then all but finitely many zeros of f are in {z : | arg z| ≤ π/6} while all but finitely
many 1-points of f are in {z : Re z ≤ 0}.

Theorems 1.1 and 1.2 will be derived from the following result.

Theorem 1.3. Let S0 and S1 be closed sectors in C of opening angles at most π.

Suppose that S0 ∩ S1 = {0} and let f be a transcendental entire function of finite
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order for which all but finitely many zeros are in S0 while all but finitely many

1-points are in S1. Then f has the form

f(z) =

∫ z

0

p(ζ)eq(ζ)dζ + c, (1.1)

where p and q are polynomials and c ∈ C.

The conclusion of Theorem 1.3 does not hold if one of the sectors S0 and S1

has opening angle greater than π. Similarly, the half-plane in Theorem 1.2 cannot
be replaced by a sector of opening angle greater than π.

For example, if 0 < ρ < 1 and (an) is a sequence of positive real numbers
satisfying an ∼ n1/ρ as n → ∞, then

f(z) :=
∞
∏

n=1

(

1− z

an

)

is an entire function with positive zeros for which the 1-points accumulate at the
rays arg z = ±π(1−1/2ρ); see, e.g., [8, Section 2.5] for the asymptotics of canonical
products with positive zeros.

The restriction on the order is essential in all stated theorems. In fact, for any
two distinct directions there exists an entire function f of infinite order such that
the zeros of f accumulate in one of these directions while the 1-points accumulate
in the other direction; see, e.g., [2, Theorem 5].

On the other hand, a classical result of Edrei [5] says that if the zeros and
1-points of an entire function f lie on finitely many rays, then f has finite order.

2 Examples

We consider functions f of the form (1.1). Let d := deg(q) and let A be the leading
coefficient of q so that q(z) ∼ Azd as z → ∞. For k ∈ {1, 2, . . . , d} we put

φk :=
(2k − 1)π − argA

d
. (2.1)

It is easy to see that the limits

ak := lim
r→∞

f(reiφk) (2.2)

exist. For ε > 0 we then have, as |z| → ∞,

f(z) → ak for φk −
π

2d
+ ε ≤ arg z ≤ φk +

π

2d
− ε, (2.3)
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while
|f(z)| → ∞ for φk +

π

2d
+ ε ≤ arg z ≤ φk+1 −

π

2d
− ε. (2.4)

Here we have put φd+1 = φ1 + 2π.
The following quantitative form of (2.3) and (2.4) can be proved using integra-

tion by parts; see [10, Lemma 4.1].

Lemma 2.1. Let

φk −
π

d
≤ arg z ≤ φk +

π

d
.

Then

f(z) = ak +
p(z)

q′(z)
eq(z)

(

1 +O
(

1

|z|

))

as |z| → ∞.

It is well-known – and follows easily from Lemma 2.1 – that for any a ∈ C\{ak}
and ε ∈ (0, π/d) each of the sectors {z : | arg z−φk±π/(2d)| < ε} contains infinitely
many a-points, but only finitely many ak-points.

Thus for any a ∈ C the a-points of f can accumulate only at the rays given by
arg z = φk ± π/(2d), and they do accumulate at the rays arg z = φk ± π/(2d) for
a ∈ C \ {ak}, but not for a = ak.

Verification of Example 1.1. Since
∫ ∞

0

t2 exp(−t2)dt =
1

4

√
π

we have (2.2) with φ1 = 0, φ2 = π, a1 = 1 and a2 = 0. Thus the zeros are
asymptotic to the rays arg z = ±π/4 while the 1-points are asymptotic to the rays
arg z = ±3π/4. Lemma 2.1 yields that |f(z)| → ∞ as |z| → ∞ if π/4 ≤ arg z ≤
3π/4 or −3π/4 ≤ arg z ≤ −π/4. This implies that all but finitely many zeros are
contained in {z : | arg z| < π/4} and all but finitely many 1-points are contained in
{z : | arg z − π| < π/4}.

Verification of Example 1.2. Here we have d = 3 and (2.2) holds with φ1 = 0,
φ2 = 2π/3, φ3 = 4π/3, a1 = 1 and a2 = a3 = 0. Thus the zeros are asymptotic to
the rays arg z = ±π/6 while the 1-points are asymptotic to the rays arg z = ±π/2
and arg z = ±5π/6. The rest of the argument follows as in Example 1.1 from
Lemma 2.1.
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3 Preliminary results

We shall need some results about subharmonic functions; see [9], [11, Chapter III],
[12, Chapter III] and [14] for basic results used in the following.

The following result is implicit in [2]. For completeness, we include a proof.

Lemma 3.1. Let u be subharmonic function in a neighborhood of 0 and u(0) = 0.
Let α ∈ (0, π] and suppose that u(z) < 0 for | arg z| < α. Then α ≤ π/2, and there

exists c > 0 and r0 > 0 such that
∫ α

−α

u(reit)dt ≤ −crπ/(2α) for r ∈ (0, r0). (3.1)

Proof. Let r1 > 0 be such that the closed disk of radius r1 around 0 is in the
domain of u. Then there exists a harmonic majorant h of u in the (truncated)
sector Sα := {z : | arg z| < α, |z| < r1} such that h(re±iα) = 0 for r ∈ (0, r1). Let
r2 := r

π/(2α)
1 and Sπ/2 := {z : Re z > 0, |z| < r2}. Then the function v defined by

v(z) = h(z2α/π), where the principal branch of the root is used, is negative and
harmonic in Sπ/2, and zero on the vertical part of the boundary. By the reflection
principle v extends to a harmonic function in the disc of radius r2 around 0, and
∇v(0) 6= 0. Therefore v(z) = −c0 Re z +O(z2) near zero for some c0 > 0. Thus

∫ π/2

−π/2

v(reit)dt ≤ −1

2
c0r

if r is small enough. This implies that (3.1) is satisfied with h instead of u. Since
u < h in Sα, we deduce that u also satisfies (3.1).

To show that α ≤ π/2, let S ′
α = {z : α < arg z < 2π − α, |z| < r1} be the

complement of Sα in the disk of radius r1 and let h1 be a harmonic majorant of u
in S ′

α which satisfies h1(re
±iα) = 0 for r ∈ (0, r1). The same argument as before

shows that h1(z) = O(zπ/(2β)) as z → 0, where β := π − α. Thus there exists a
constant c1 > 0 such that

∫ 2π−α

α

u(reit)dt ≤ c1r
π/(2β) for r ∈ (0, r0).

Together with (3.1) this yields that

0 = u(0) ≤
∫ 2π+α

α

u(reit)dt ≤ c1r
π/(2β) − crπ/(2α) for r ∈ (0, r0).

We conclude that β ≥ α and thus α ≤ π/2.
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In the case that α = π/2 we will use the following result.

Lemma 3.2. Let u be subharmonic in C. Suppose that u(0) = 0 and that there

exist ρ > 0 and K > 0 such that u(z) ≤ K|z|ρ for all z ∈ C. If u is negative in

some half-plane, then ρ = 1.

In the proof of Lemma 3.2 we will use the following version of the Phragmén-
Lindelöf theorem [14, Corollary 2.3.8].

Lemma 3.3. Let u be subharmonic in the right half-plane H := {z : Re z > 0}.
Suppose that there exist constants A,B ∈ R such that

u(z) ≤ A+ B|z| for z ∈ H (3.2)

and

lim sup
ζ→z

u(ζ) ≤ 0 for z ∈ ∂H.

Put

L := lim sup
x→∞

u(x)

x
. (3.3)

Then

u(z) ≤ LRe z for z ∈ H. (3.4)

Proof of Lemma 3.2. Without loss of generality we may assume that u(z) < 0 for
Re z < 0. Lemma 3.1 and the hypotheses that u(0) = 0 and u(z) ≤ K|z|ρ yield
that if r is sufficiently small, then

0 = 2πu(0) ≤
∫ 3π/2

−π/2

u(reit)dt =

∫ π/2

−π/2

u(reit)dt+

∫ 3π/2

π/2

u(reit)dt ≤ Kπrρ − cr.

This yields that ρ ≤ 1. Hence (3.2) holds with A = B = K.
Lemma 3.3 yields that (3.4) holds with L given by (3.3). Since u is non-constant

and hence unbounded we have L > 0. Thus ρ = 1.

Let u be subharmonic in C and let µ be the Riesz measure of u. For r > 0 we
put

B(r, u) := max
|z|=r

u(z) and n(r) := µ({z : |z| ≤ r}.

Jensen’s formula (see [13, Section 7.2] or [9, Section 3.9]) yields that

N(r) :=

∫ r

1

n(t)

t
dt ≤ B(r, u) +O(1). (3.5)
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The order ρ of u is defined by

ρ := lim sup
r→∞

logB(r, u)

log r
.

Note that if u = log |f | for some entire function f , and if M(r) denotes the max-
imum modulus of f , then we have B(r, u) = logM(r). Thus the order of the
subharmonic function u coincides with that of the entire function f .

If u has finite order, then there exists a non-negative integer q satisfying q ≤
ρ ≤ q + 1 such that

∫ ∞

1

B(r, u)

rq+2
dr < ∞.

Using (3.5) we see that then also
∫ ∞

1

N(r)

rq+2
dr < ∞.

Moreover, integration by parts shows that the latter condition is equivalent to
∫ ∞

1

n(r)

rq+2
dr < ∞. (3.6)

The following result [9, Theorem 4.2] is the subharmonic version of the Hadamard
factorization theorem.

Lemma 3.4. Let u be a subharmonic of finite order ρ with Riesz measure µ. Let q
be the minimal integer such that (3.6) holds and let R > 0. Then u can be written

in the form

u(z) = v(z) + w(z) + h(z) (3.7)

where

v(z) =

∫

|ζ|<R

log |z − ζ|dµ(ζ),

w(z) =

∫

|ζ|≥R

(

log

∣

∣

∣

∣

1− z

ζ

∣

∣

∣

∣

+

q
∑

j=1

1

j
Re

(

z

ζ

)

)

dµ(ζ) (3.8)

and h is a harmonic polynomial of degree at most ρ.

We also note that the function w defined by (3.8) satisfies

B(r, w) = o(rq+1) (3.9)

as r → ∞. This follows easily from [9, Lemma 4.4]; see also [8, p. 57, Remark 2].
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Lemma 3.5. Let u be a subharmonic function of order at most 1. Suppose that

there exists R > 0 and ε > 0 such that u is harmonic in each of the two domains

T± := {z : |z| > R, | arg z ± π/2| < ε}. Suppose also that u is bounded on the

imaginary axis. Then u is harmonic and of the form u(z) = aRe z+b with a, b ∈ R.

Proof. We apply Lemma 3.4. Since u has order 1, we have q ∈ {0, 1} in (3.8) and
h has the form

h(z) = Re(Az + B)

for some A,B ∈ C. For y ∈ R we then have

h(iy) + h(−iy) = Re(Aiy + B) + Re(−Aiy + B) = 2ReB. (3.10)

Assuming that u is not harmonic, we may choose R such that µ({z : |z| < R}) is
positive and we find that v(z) → ∞ as |z| → ∞. In particular,

v(iy) + v(−iy) → ∞ (3.11)

as y → ∞. Since u is bounded on the imaginary axis, (3.7), (3.10) and (3.11) imply
that

Q(y) := w(iy) + w(−iy) → −∞ (3.12)

First we consider the case q = 0. Define w∗ by w∗(z) = w(z) + w(z). Then
B(r, w∗) = o(r) as r → ∞ by (3.9). Moreover, w∗(iy) = Q(y) so that w∗ is bounded
on the imaginary axis by (3.12). The Phragmén-Lindelöf theorem (Lemma 3.3) now
implies that w∗ is constant, contradicting (3.12).

Now we consider the case q = 1. In order to estimate Q(y) in this case we note
that

log

∣

∣

∣

∣

1− iy

ζ

∣

∣

∣

∣

+ Re

(

iy

ζ

)

+ log

∣

∣

∣

∣

1− −iy

ζ

∣

∣

∣

∣

+ Re

(−iy

ζ

)

= log

∣

∣

∣

∣

1− iy

ζ

∣

∣

∣

∣

+ log

∣

∣

∣

∣

1− iy

ζ

∣

∣

∣

∣

= log

∣

∣

∣

∣

1− i
2yRe ζ

|ζ|2 − y2

|ζ|2
∣

∣

∣

∣

=
1

2
log

(

(

1− y2

|ζ|2
)2

+ 4
y2(Re ζ)2

|ζ|4

)

so that

Q(y) =
1

2

∫

|ζ|≥R

log

(

(

1− y2

|ζ|2
)2

+ 4
y2(Re ζ)2

|ζ|4

)

dµ(ζ). (3.13)
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For | arg ζ ± π/2| ≥ ε we have |Re ζ| ≥ α|ζ| with α := cos(π/2− ε) > 0 and thus

log

(

(

1− y2

|ζ|2
)2

+ 4
y2(Re ζ)2

|ζ|4

)

≥ log

(

(

1− y2

|ζ|2
)2

+ 4α2 y2

|ζ|2

)

= log

(

1 +
(

4α2 − 2
) y2

|ζ|2 +
y4

|ζ|4
)

.

(3.14)

As u is harmonic in T± we find that (3.14) holds for every ζ in the support of
µ which satisfies |ζ| ≥ R. We put nR(r) = µ{z : R ≤ |z| ≤ r} and note that
nR(r) = n(r)− µ({z : |z| < R}); that is, nR(r) and n(r) differ only by a constant.
We deduce from (3.13) and (3.14), using also integration by parts, that

Q(y) ≥ 1

2

∫ ∞

R

log

(

1 +
(

4α2 − 2
) t2

|ζ|2 +
t4

|ζ|4
)

dn(t)

= 2

∫ ∞

0

nR(t)K
(y

t

) dt

t
,

where

K(x) :=
x2 (2α2 − 1 + x2)

1 + (4α2 − 2) x2 + x4
=

x2 (β + x2)

1 + 2βx2 + x4

with β := 2α2 − 1 = 2 cos2(π/2− ε)− 1 = cos(π − 2ε). It is easy to see that there
exists a constant c1 depending only on α such that

|K(x)| ≤ c1x
2 for x ≥ 0. (3.15)

In fact, this holds with c1 := 1/(4α
√
1− α2). Moreover, we have

|K(x)| ≤ 4x2

2 + x4
for x ≥ 2. (3.16)

By (3.12) there exists y0 > 0 such that Q(y) ≤ 0 for y ≥ y0. For 0 < δ < 1 we
thus have

0 ≥
∫ ∞

y0

1

y2+δ
Q(y)dy

=

∫ ∞

y0

1

y2+δ

∫ ∞

0

nR(t)K
(y

t

) dt

t
dy

=

∫ ∞

0

nR(t)

∫ ∞

y0

1

y2+δ
K
(y

t

) 1

t
dy dt

=

∫ ∞

0

nR(t)

t2+δ

∫ ∞

y0/t

K(s)

s2+δ
ds dt.

(3.17)
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Here we have changed the order of integration. This is justified by the Fubini-
Tonelli theorem, since by (3.15) and (3.16) the above integrals are finite if K(·) is
replaced by |K(·)|.

It follows from (3.15) that

∫ y0/t

0

K(s)

s2+δ
ds ≤ c1

∫ y0/t

0

ds

sδ
=

c1
1− δ

(y0
t

)1−δ

and hence
∫ ∞

0

nR(t)

t2+δ

∫ y0/t

0

K(s)

s2+δ
ds dt ≤ c2 :=

c1y
1−δ
0

1− δ

∫ ∞

0

nR(t)

t3
dt < ∞

by (3.6). Combining this with (3.17) we deduce that
∫ ∞

0

nR(t)

t2+δ
dt ·

∫ ∞

0

K(s)

s2+δ
ds ≤ c2 (3.18)

for some constant c2. Note that c2 remains bounded as δ → 0.
We have

∫ ∞

0

K(s)

s2+δ
ds =

1

2

∫ ∞

0

x−γ x+ β

1 + 2βx+ x2
dx

with γ := (1 + δ)/2. The computation of the integral on the right hand side is a
standard application of the residue theorem which yields that
∫ ∞

0

K(s)

s2+δ
ds =

1

2

π

sin(πγ)
cos(γ(π − arccos(−β))) =

1

2

π

sin(πγ)
cos(γ(π − 2ε)).

Since γ → 1/2 as δ → 0 we thus have

lim
δ→0

∫ ∞

0

K(s)

s2+δ
ds =

1

2

π

sin(π/2)
cos

(

1

2
π − ε

)

=
1

2
πα > 0. (3.19)

Moreover,
∫ ∞

0

nR(t)

t2
dt = ∞,

since q = 1, and q is chosen as the smallest integer such that (3.6) holds. Thus

lim
δ→0

∫ ∞

0

nR(t)

t2+δ
dt = ∞. (3.20)

Taking the limit as δ → 0 in (3.18) yields a contradiction to (3.19) and (3.20).

10



4 Proofs of the Theorems

Proof of Theorem 1.3. Let θj be the opening angle of Sj. Since only one of the
two sectors can have opening angle less than π, we may assume without loss of
generality that θ0 < π. We may also assume that f(0) /∈ {0, 1}.

First we show that the genus of f is at least 1. Suppose that this is not the
case so that f is of genus 0. Then f has the form

f(z) = f(0) lim
n→∞

n
∏

k=1

(

1− z

ak

)

= 1 + (f(0)− 1) lim
n→∞

n
∏

k=1

(

1− z

bk

)

,

with all but finitely many ak contained in S0 and all but finitely many bk contained
in S1. The Gauss-Lucas theorem and Hurwitz’s theorem imply that all zeros of f ′

are contained in the convex hull of the ak as well as in the convex hull of the bk.
Thus f ′ has only finitely many zeros. Since we assumed that f has genus 0, this
contradicts our hypothesis that f is transcendental. Hence f has genus at least 1.

Let ρ be the order of f . Since f has genus at least 1 we have ρ ≥ 1. Let M(r)
denote the maximum modulus of f . We proceed as in [2] and note that since f is
of finite order, there exists a sequence (rk) tending to ∞ such that

logM(trk) = O(logM(rk)) as k → ∞, (4.1)

for every t > 1. The existence of such a sequence (rk) for a function f of finite
order is well-known and easy to prove, but it is also an immediate consequence of
a result of Drasin and Shea [4] on the existence of Pólya peaks. Put

ρ∗ := sup

{

p ∈ R : lim sup
r,t→∞

logM(tr)

tp logM(r)
= ∞

}

and

ρ∗ := inf

{

p ∈ R : lim inf
r,t→∞

logM(tr)

tp logM(r)
= 0

}

.

The result of Drasin and Shea [4] says that

0 ≤ ρ∗ ≤ ρ ≤ ρ∗ ≤ ∞ (4.2)

and if λ ∈ R satisfies ρ∗ ≤ λ ≤ ρ∗, then logM(r) has a sequence of Pólya peaks of
order λ; that is, there exists a sequence (rk) tending to ∞ such that if ε > 0, then

logM(trk) ≤ (1 + ε)tλ logM(rk) for ε ≤ t ≤ 1

ε
,
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provided k is large enough.
For a sequence (rk) satisfying (4.1) we consider, as in [2], the subharmonic

functions

uk(z) :=
log |f(rkz)|
logM(rk)

and vk(z) :=
log |f(rkz)− 1|

logM(rk)
.

Arguing as in [2, p. 97] we can deduce from [11, Theorems 4.1.8 and 4.1.9] or [12,
Theorems 3.2.12 and 3.2.13] that, passing to a subsequence if necessary, the limits

u(z) := lim
k→∞

log |f(rkz)|
logM(rk)

and v(z) := lim
k→∞

log |f(rkz)− 1|
logM(rk)

(4.3)

exist and are subharmonic in C. Here the convergence is in the Schwartz space D ′.
This implies that we also have convergence in L1

loc.
Moreover, the limits in (4.3) have the following properties:

(a) max{u(z), 0} = max{v(z), 0} for all z ∈ C;

(b) {z : u(z) < 0} ∩ {z : v(z) < 0} = ∅;

(c) u is harmonic in C\S0 and v is harmonic in C\S1;

(d) max|z|=1 u(z) = max|z|=1 v(z) = 1.

If (rk) is a sequence of Pólya peaks of order λ > 0, then we also have

(e) u(0) = v(0) = 0;

(f) max{u(z), v(z)} ≤ |z|λ for all z ∈ C.

We refer to [2, p. 97] for the deduction of these properties.
Suppose first that (rk) is a sequence of Pólya peaks of order λ > 0 so that

(a)–(f) hold. Note that such a sequence exists by (4.2) since ρ ≥ 1.
Let P be the set where one of the functions u and v is positive. In view of (a)

this set coincides with the set where both functions are positive. Let z0 ∈ P . Then
z0 6= 0 by (e) and since S0 ∩S1 = {0} we deduce from (c) that one of the functions
u and v is harmonic in some neighborhood of z0. In particular, it is continuous
in z0 and thus positive in some (possibly smaller) neighborhood of z0. Hence P is
open.

Let N be the set of points where at least one of the functions u and v is negative.
Since subharmonic functions are upper semicontinuous, N is also open.
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Thus the complement E := C \ (P ∪N) = {z : u(z) = v(z) = 0} is closed. We
will show that E has no interior. Suppose to the contrary that E has an interior
point z0. Without loss of generality we may assume that z0 /∈ S1. By (c), the
function v is harmonic in C \ S1, which contains a neighborhood of z0. It follows
that v(z) = 0 for all z ∈ C \ S1. By (a) we have u(z) ≤ 0 for all z ∈ C \ S1. If
u(z1) < 0 for some z1 ∈ C \ S1, then u(z) < 0 for all z ∈ C \ S1 by the maximum
principle. This is a contradiction since u(z0) = 0 and we assumed that z0 ∈ C \S1.
Hence u(z) = 0 for all z ∈ C \ S1. Since u is harmonic in C \ S0 by (c), we find
that u(z) = 0 for all z ∈ C, a contradiction. Thus E has no interior.

Our next goal is to show that either N ⊂ S0∪S1 or N ⊃ C\S1, where the latter
case can occur only if θ1 = π. To this end, let Q be a component of N such that
u(z) < 0 for z ∈ Q. We will show that ∂Q ⊂ S1. In order to do so, suppose that
z0 ∈ ∂Q\S1. Then v is harmonic in some neighborhood V of z0. By (a) and (b) we
have v(z) = 0 for z ∈ Q. It follows that v(z) = 0 for z ∈ V . On the other hand,
V also contains a point z1 such that u(z1) > 0. Thus v(z1) = u(z1) > 0 by (a).
This is a contradiction. Thus ∂Q ⊂ S1. If θ1 < π, then Q cannot contain C \ S1

by Lemma 3.1. Hence Q ⊂ S1 if θ1 < π. But if θ1 = π, then it is also possible that
Q ⊃ C \ S1.

Similarly, if Q is a component of N such that v(z) < 0 for z ∈ Q, then ∂Q ⊂ S0.
Since we assumed that θ0 < π, this implies together with Lemma 3.1 that Q ⊂ S0.
Overall we see that N ⊂ S0 ∪ S1 or N ⊃ C \ S1, as claimed above. In the latter
case, u(z) < 0 for z ∈ C \ S1.

We first consider the case that N ⊂ S0 ∪ S1. It follows that u(z) ≥ 0 and
v(z) ≥ 0 for z ∈ C \ (S0 ∪ S1). Since both u and v are harmonic in C \ (S0 ∪ S1)
we actually have u(z) > 0 and v(z) > 0 for z ∈ C \ (S0 ∪ S1) by the minimum
principle. Hence u(z) = v(z) for z ∈ C \ (S0 ∪ S1) by (a). Thus the function

w(z) :=

{

u(z) if z ∈ C\S0,

v(z) if z ∈ C\S1,
(4.4)

is well-defined and harmonic in C\{0}. By the removable singularity theorem [1,
Theorem 2.3] it is harmonic in C. Hence w has the form w = Re g for some entire
function g. Since w(0) = 0 we may choose g such that g(0) = 0.

Since (rk) is a sequence of Pólya peaks of order λ > 0, we can deduce from (f)
that

w(z) = Re g(z) ≤ |z|λ. (4.5)

This implies that g is a polynomial. In fact, λ is a positive integer and we have

g(z) = czλ (4.6)
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for some c ∈ C. Moreover, |c| = 1 by (d).
In the above reasoning we can take any λ ∈ [ρ∗, ρ

∗]∩ (0,∞), but the conclusion
gives that λ is a positive integer. Together with (4.2) we conclude that

ρ∗ = ρ∗ = ρ ∈ N. (4.7)

Thus the only possible value for λ is λ = ρ. It follows from (4.7) that (4.1)
is satisfied for any sequence (rk) tending to ∞. We mention that this kind of
argument appears first in [6, Section 7] and [7, p. 1209], and it was also used in [2,
p. 100].

More precisely, (4.7) implies that for any δ > 0 there exist r0, t0 > 0 such that

tρ−δ logM(r) ≤ logM(tr) ≤ tρ+δ logM(r) for r ≥ r0 and t ≥ t0. (4.8)

Dropping the assumption that (rk) is a sequence of Pólya peaks we still have prop-
erties (a)–(d), but instead of (f) we can deduce from (4.8) only that

(f ′) max{u(z), v(z)} ≤
{

|z|ρ+δ for |z| ≥ t0,

|z|ρ−δ for |z| ≤ 1/t0.

This still yields (e).
Still assuming that the set N where one of the functions u and v is negative is

contained in S0∪S1, we again find that the function w defined by (4.4) is harmonic
and of the form w = Re g for some entire function g. Instead of (4.5), which was
obtained from (f), we now deduce from (f ′) that

w(z) = Re g(z) ≤
{

|z|ρ+δ for |z| ≥ t0,

|z|ρ−δ for |z| ≤ 1/t0.

This implies that g is a polynomial of degree at most ρ + δ which has a zero of
multiplicity at least ρ − δ at the origin. Choosing δ < 1 we again find that g has
the form (4.6) with λ = ρ; that is,

g(z) = czρ.

To summarize, every sequence tending to ∞ has a subsequence (rk) such that

lim
k→∞

log |f(rkz)|
logM(rk)

= Re(czρ) for z ∈ C \ S0 (4.9)
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while

lim
k→∞

log |f(rkz)− 1|
logM(rk)

= Re(czρ) for z ∈ C \ S1. (4.10)

Next we note that log |f | = Re(log f) for a branch log f of the logarithm. Also,
the derivative h′ of a holomorphic function h can be computed from its real part,
via h′ = ∂ Reh/∂x− i∂ Reh/∂y, or via

h′(z) =
1

πi

∫

|ζ−a|=t

Reh(ζ)

(ζ − z)2
dζ for |z − a| < r

if h is holomorphic in {z : |z − a| ≤ r}. We can thus deduce from (4.9) that

lim
k→∞

rkf
′(rkz)

f(rkz) logM(rk)
= cρzρ−1 for z ∈ C \ S0.

In particular, if T1 is a closed subsector of C \ S1, then f ′ has only finitely many
zeros in T1. Applying the same argument to (4.10) yields that f ′ has only finitely
many zeros in any closed subsector T0 of C \S0. As we may choose T0 and T1 such
that T0 ∪ T1 = C we conclude that f ′ has only finitely many zeros in C. Since
f and hence f ′ have finite order this implies that f ′ has the form f ′ = peq with
polynomials p and q. Thus f has the form (1.1).

It remains to consider the case that N ⊃ C \ S1, with θ1 = π and u(z) < 0 for
z ∈ C \S1. We may assume without loss of generality that S1 is the left half-plane
and S0 = {z : | arg z| ≤ π − ε} for some ε > 0. It follows from (e) and (f) that u
satisfies the hypotheses of Lemma 3.2. This lemma then yields that ρ = 1. Since u
is harmonic in C \ S0 by (c), Lemma 3.5 yields that u has the form u(z) = az + b.
Since u(0) = 0 we have b = 0 and using (d) we see that |a| = 1 and in fact a = −1.
Hence u(z) = −Re(z); that is,

uk(z) =
log |f(rkz)|
logM(rk)

→ −Re z. (4.11)

As before we can now deduce that the limits (4.3) exist not only if (rk) is chosen as
a sequence of Pólya peaks, but in fact for every sequence (rk) tending to ∞. Once
this is known, it is not difficult to see that the question whether N ⊂ S0 ∪ S1 or
N ⊃ C \ S1 does not depend on the choice of the sequence (rk).

Thus we only have to deal with the case that (4.11) holds for every sequence
(rk) tending to ∞. We will show that this implies that f has the form f(z) = eaz+b

with constants a and b. In particular, f has the form (1.1).
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It follows from (4.11) that there is a curve γ tending to ∞ near the imaginary
axis in both directions such that |f(z)| = 1 for z ∈ γ. Suppose that f has at least
one zero. Then f is unbounded on the imaginary axis by Lemma 3.5, applied to
the subharmonic function log |f |. Thus there exists a real sequence (yk) such that

Tk := |f(iyk)| → ∞ (4.12)

as k → ∞. Without loss of generality we may assume that yk → +∞. Assuming
that Tk > 1 there exists xk > 0 such that zk := xk + iyk lies on the curve γ. We
have xk = o(yk) as k → ∞ by (4.11).

As before it follows from (4.11) with rk = yk by differentiation that

lim
k→∞

ykf
′(ykz)

f(ykz) logM(yk)
= −1 for z ∈ C \ S0. (4.13)

Put Lk := (logM(yk))/yk. It follows from (4.13) that

1

2
Lk ≤

∣

∣

∣

∣

f ′(z)

f(z)

∣

∣

∣

∣

≤ 2Lk for |z − iyk| ≤ 2xk, (4.14)

provided k is large enough. Hence

log Tk = log |f(iyk)| − log |f(xk + iyk)|

= Re

(

−
∫ xk

0

f ′(x+ iyk)

f(x+ iyk)
dx

)

≤
∫ xk

0

∣

∣

∣

∣

f ′(x+ iyk)

f(x+ iyk)

∣

∣

∣

∣

dx

≤ 2xkLk.

(4.15)

Let now γk be the component of the intersection of γ with the disk {z : |z−zk| ≤ xk}
that contains zk. Then f ◦ γk is a curve contained in the unit circle. We have
f ′(z) 6= 0 for z ∈ γk by (4.14), provided k is large enough. This implies that
arg f(z) is monotone as z runs through γk. Moreover, we have

length(γk) ≥ 2xk

and thus

length(f ◦ γk) ≥ 2xk inf
z∈γk

|f ′(z)| = 2xk inf
z∈γk

∣

∣

∣

∣

f ′(z)

f(z)

∣

∣

∣

∣
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for large k. Combining this with (4.14), (4.15) and (4.12) we find that

length(f ◦ γk) ≥ xkLk ≥
1

2
log Tk > 2π

for large k. We conclude that f ◦ γk wraps around the unit circle at least once.
Hence γk contains a 1-point of f , contradicting the hypothesis that all 1-points are
in the left half-plane.

It follows that f has no zeros. Hence f is of the form f(z) = eaz+b.

Proof of Theorem 1.1. Let f be a transcendental entire function for which all but
finitely many zeros are in S0 while all but finitely many 1-points are in S1. Theo-
rem 1.3 yields that f has the form (1.1) with polynomials p and q. We show first
that the degree of q is even. To see this, let φk and ak be given by (2.1) and (2.2)
and suppose that d := deg(q) is odd, say d = 2m − 1 with m ∈ N. First we note
that ak ∈ {0, 1} for all k ∈ {1, . . . , d} since otherwise both zeros and 1-points would
accumulate at the rays arg z = φk ± π/(2d).

Now fix k ∈ {1, . . . , d} and suppose that ak = 0. Then the 1-points of f
accumulate at the ray arg z = φk +π/(2d). Since all but finitely many 1-points are
contained in a sector of opening less than π, they cannot accumulate at the ray
arg z = φk+π/(2d)+π = φk+m−2π/(2d). Here the index in φk is taken modulo d;
that is, φj = φk if j ≡ k (mod d). Hence the 1-points also do not accumulate at
the ray arg z = φk+m + 2π/(2d). It follows that the zeros accumulate at the ray
arg z = φk+m + 2π/(2d). Repeating this argument we deduce that the 1-points
accumulate at the rays arg z = φk+2m ± 2π/(2d) = φk+1 ± 2π/(2d). Induction
now shows that the 1-points accumulate at the rays arg z = φj ± 2π/(2d) for all
j ∈ {1, . . . , d}, contradicting our hypothesis that they are contained in a sector of
opening angle less than π. Thus d is even.

Suppose first that d = 2. Without loss of generality we may assume that
θ0 < π/2. Then, for k ∈ {1, 2}, the zeros of f cannot accumulate at both rays
arg z = φk ± π/4. As explained in Section 2, this implies that the 1-points of f
accumulate at the rays arg z = φ1 ± π/4 and arg z = φ2 ± π/4. This contradicts
the assumption that all but finitely many 1-points are in S1.

Suppose now that d ≥ 4. It follows from the hypothesis that there exists an
open sector T of opening angle greater than π/4 such that f has only finitely many
zeros and 1-points in T . However, since d ≥ 4, there exists k ∈ {1, . . . , d} such
that one of the rays arg z = φk +π/(2d) and arg z = φk −π/(2d) is contained in T .
Since the zeros or 1-points accumulate at these rays, this is a contradiction.
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Proof of Theorem 1.2. Let again φk and ak be given by (2.1) and (2.2), with d :=
deg(q). As in the proof of Theorem 1.1 we have ak ∈ {0, 1} for all k ∈ {1, . . . , d}.
By hypothesis there exists a closed sector T of opening angle greater than π/3
which intersects H and S only in 0. This implies that T does not intersect any of
the rays arg z = φk ± π/(2d). It follows that π/d > π/3 and thus d < 3.

Suppose that d = 2. Since the 1-points are contained in a half-plane we have
ak = 0 for some k ∈ {1, 2}. This implies that the zeros accumulate at both rays
arg z = φk ± π/4. Hence there are infinitely many zeros not contained in S, a
contradiction.

It follows that d = 1. This implies that f has the form given.
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