Rational curves with real inflection points

Let $f=\left(f_{0}, \ldots, f_{n}\right)$ be a vector of complex polynomials. Suppose that the Wronskian determinant $W=W\left(f_{0}, \ldots, f_{n}\right)$ has only real zeros. Then there exists a matrix $A \in G L(n+1, \mathbf{C})$, such that the vector $A f$ consists of real polynomials.

This was conjectured by B. and M. Shapiro. The conclusion is not true if we only assume that W is a real polynomial. The conjecture is known to be true for $n=1[1]$.
[1] A. Eremenko and A. Gabrielov, Rational functions with real critical points and B. and M. Shapiro conjecture in real enumerative geometry, Ann. Math., 1551 (2002).

