A COUNTEREXAMPLE TO CARTAN’S CONJECTURE ON HOLOMORPHIC CURVES OMITTING HYPERPLANES

ALEXANDRE EREMENKO

(Communicated by Albert Baernstein II)

ABSTRACT. In his 1928 thesis H. Cartan proved a theorem which can be considered as an extension of Montel’s normality criterion to holomorphic curves in complex projective plane \(\mathbb{P}^2 \). He also conjectured that a similar result is true for holomorphic curves in \(\mathbb{P}^n \) for any \(n \). A counterexample to this conjecture is constructed for any \(n \geq 3 \).

The following theorem of Borel may be considered as an extension of Picard’s theorem to holomorphic mappings of the complex plane \(\mathbb{C} \) to complex projective space.

Borel’s Theorem. Let \(f_1, \ldots, f_p \) be a system of entire functions without zeros and

\[
f_1 + \ldots + f_p = 0.
\]

Then the set of indices \(\{1, \ldots, p\} \) can be partitioned into disjoint subsets \(\{I\} \) such that \(|I| \geq 2 \), and for every \(I \) the functions \(f_j, j \in I \), are proportional and their sum is zero.

According to the so-called Bloch principle, to every theorem of Picard type should correspond a Montel-type theorem for families of functions in the unit disk. The following statement is known as

Cartan’s Conjecture ([2, 3]). Let \(\mathcal{F} \) be an infinite family of \(p \)-tuples of holomorphic functions \(f = (f_1, \ldots, f_p) \) without zeros in the unit disk \(\mathbb{D} \) satisfying the Borel equation (1).

Then there exists an infinite subsequence \(\mathcal{L} \) having the following property.

There exists a partition of indices \(P = \{1, \ldots, p\} \) into disjoint sets \(\{S\} \) and each \(S \) contains a subset \(I \) with at least two elements, which may be equal to \(S \) itself. These satisfy the following properties for \(f \in \mathcal{L} \):

(i) For each \(S \) and \(j, k \in I \subset S \) the sequence \(\{f_j/f_k\} \) is convergent (uniformly on compacta, to a non-zero function).

(ii) If \(j \in S \setminus I \) and \(k \in I \subset S \) then \(f_j/f_k \) converges to 0.

(iii) Given \(k \in I \subset S \),

\[
\sum_{j \in I} f_j/f_k \text{ converges to } 0.
\]

Received by the editors March 29, 1995.

1991 Mathematics Subject Classification. Primary 30D45; Secondary 32H30.

©1996 American Mathematical Society

3097
When $p = 3$ the statement is (almost) equivalent to the Montel theorem, which asserts that a family of meromorphic functions in the unit disk omitting three given values is normal. Cartan [2], see also [3, Ch. VIII], proved a partial result:

Let F be as above. Then there exists a subsequence $L \subset F$ having one of the following properties:

(a) The full set P of indices satisfies (i), (ii) and (iii) (with single set $S = P$), or

(b) There are two disjoint subsets S_1 and S_2 in P, each containing at least two elements, satisfying the three conditions (i), (ii) and (iii).

The point is that S_1 and S_2 in (b) may not cover the whole set of indices P. This result implies that Cartan’s conjecture is true for $p = 3$ and $p = 4$ [2]. We show that it fails for $p = 5$.

Example. It is convenient to work in the rectangle $R = \{x + iy : |x| < \pi, 0 < y < 1\}$ instead of the unit disk. For every natural integer $n > 12 > 4e$ consider the function $h(z) = h_n(z) = \exp(n \exp iz), z \in R$. We have

$$\log |h_n(x + iy)| = n \cos x \exp(-y).$$

The set $\{z \in R : |h_n(z)| < 3\}$ consists of two components: left and right. We denote the right component by D_n so that as $n \to \infty$, $D_n \to R \cap \{x \geq \pi/2\}$. Choose a diffeomorphism p of the disk $\{w : |w| \leq 3\}$ onto itself with the following properties:

$$p(w) = w, \quad |w| = 3,$$

$$p(0) = 1$$

and

p is conformal for $|w| < 2$.

Put

$$\tilde{G}_n(z) = \begin{cases} p \circ h_n(z), & z \in D_n, \\ h_n(z), & z \in R \setminus D_n. \end{cases}$$

Then we can find a diffeomorphism $\phi_n : R \to R$, continuous in \tilde{R} with

$$\phi_n(0) = 0, \quad \phi_n(\pm \pi) = \pm \pi$$

such that

$$G_n = \tilde{G}_n \circ \phi_n^{-1}$$

is holomorphic in R. This ϕ_n is obtained by solving a Beltrami equation [1]

$$\frac{\partial \phi_n}{\partial \bar{z}} = \mu \frac{\partial \phi_n}{\partial z},$$

where μ is a smooth function, $|\mu(z)| \leq c \leq 1, z \in R$, c an absolute constant, and

$$\text{supp} \mu = K_n = \{z \in R : \Re z > 0, 2 \leq |h_n(z)| \leq 3\}.$$

We claim that

$$\phi_n(z) - z \to 0, \quad n \to \infty$$

uniformly on R. Indeed, $\{\phi_n\}$ is a family of quasiconformal homeomorphisms of R with uniformly bounded dilatation, so this family is precompact (the topology of
uniform convergence). Any limit function \(\phi \) of the family is conformal everywhere in \(R \) except perhaps the segment

\[
K = \{ \pi/2 + it : 0 < t < 1 \} = \lim_{n \to \infty} K_n.
\]

But \(K \) is a removable singularity for homeomorphisms conformal in the complement of \(K \). So \(\phi \) is a conformal automorphism of \(R \) and (2) implies that \(\phi = \text{id} \). This proves (4). Notice that \(G_n - 1 \) has no zeros in \(R \cap \{ x > 0 \} \) and \(G_n \) has no zeros in \(R \cap \{ x < 0 \} \). It follows from (4) that

\[
\log |G_n(x + iy) - 1| = (n + o(1)) \cos x \exp(-y), \quad x > 0
\]

and

\[
\log |G_n(x + iy)| = (n + o(1)) \cos x \exp(-y), \quad x < 0,
\]

when \(n \to \infty \) uniformly on \(R \). Now we define \(H_n \) by

\[
G_n + H_n = 1.
\]

Asymptotic equalities (5) and (6) imply respectively

\[
\log |H_n(x + iy)| = (n + o(1)) \cos x \exp(-y), \quad x > 0
\]

and

\[
\log |H_n(x + iy) - 1| = (n + o(1)) \cos x \exp(-y), \quad x < 0,
\]

as \(n \to \infty \) uniformly on \(R \).

Now we set \(a = \pi - 1/(e + 1) \) and define

\[
f_n^1(z) = \exp\{n(z + a)\}, \quad f_n^2(z) = \exp\{-n(z + a)\},
\]

\[
f_n^3 = G_n - f_n^1, \quad f_n^4 = H_n - f_n^2, \quad f_n^5(z) = -1.
\]

From this definition and (7) follows that (1) is satisfied. Furthermore we have in view of (5), (6), (8) and (9)

\[
|G_n| < |f_n^1| \quad \text{and} \quad |H_n| < |f_n^2| \quad \text{in} \quad R
\]

for \(n \) large enough.

Inequalities (10) show that all five functions \(f_j \) are zero-free in \(R \) if \(n \) is large enough.

Now we show that the conclusion of Cartan’s conjecture is not valid for the functions of our sequence. This is because \(f_5^n \) cannot be in the same class \(S \) with any other function \(f_j^n, 1 \leq j \leq 4 \). Indeed, when \(j \) is odd we have

\[
\log |f_j^n(z)| = (n + o(1))(\Re z + a), \quad n \to \infty,
\]

so

\[
f_j^n (-\pi + \frac{1}{2(e + 1)} + \frac{i}{2}) \to 0 \quad \text{and} \quad f_j^n(i/2) \to \infty, \quad n \to \infty.
\]

A similar argument works for even \(j \). In this case

\[
f_j^n \left(\pi - \frac{1}{2(e + 1)} + \frac{i}{2} \right) \to 0 \quad \text{and} \quad f_j^n(i/2) \to \infty, \quad n \to \infty.
\]

So \(f_5^n \equiv -1 \) cannot be included in any class \(S \) described in (i) and (ii) of Cartan’s conjecture.
Remarks. The simplest counterexample for any \(p > 6 \) can be constructed by adding non-zero constant functions \(f^j_n \) with the properties

\[
\sum_{j=6}^{p} f^j_n = 0
\]

and \(|f^j_n| = b^{-n}, 6 \leq j \leq p\), where \(1 < b < \exp\{1/(e+1)\} \). These new functions may be included in one class \(S \) with \(f^0_n \) but then (iii) fails for this class. Our example for \(p = 5 \) shows that even a partition into classes \(S \), \(\text{card } S \geq 2 \), which satisfy (i) and (ii), is impossible. Examples with this property can also be constructed for any \(p > 5 \).

The author thanks David Drasin, who made many helpful suggestions, and V. Lin for illuminating discussions.

REFERENCES

DEPARTMENT OF MATHEMATICS, PURDUE UNIVERSITY, WEST LAFAYETTE, INDIANA 47907
E-mail address: eremenko@math.purdue.edu