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The problem addressed here is how can one simplify a linear transforma-
tion by choosing two different bases, one in the domain and one in the image.
Every linear transformation from Rn to Rm can be represented by an m× n
matrix in the standard basis. So we just consider the transformation

x 7→ Ax

for some arbitrary matrix A.

Theorem. For every A, there exists an orthonormal basis v1, . . . , vn and an

orthonormal basis u1, . . . , um such that

Avj = σjuj , 1 ≤ j ≤ n, (1)

where σj ≥ 0.

Remark. In the case that m < n this should be understood as σj = 0 for
j > m.

Proof. Consider the matrix ATA (it is n× n). This matrix is symmetric
and positive semidefinite. Indeed

(ATA)T = ATA,

and
xTATAx = (Ax)T (Ax) ≥ 0,

by the positivity of the dot product.
By the Spectral Theorem for symmetric matrices, there is an orthonor-

mal basis v1, . . . , vn made of eigenvectors of ATA. We take it as a basis
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in the domain of A, and we order this basis so that eigenvalues, are listed
in non-increasing order. As ATA is positive semidefinite, eigenvalues are
non-negative.

Now we prove that vectors Avi are orthogonal:

(Avi)
TAvj = vTi A

TAvj = λjv
T
i vj.

This is zero when i 6= j. To convert Avj into orthonormal system we have to
divide these vectors by square roots of λj. Recall that λj are non-negative,
and denote

σj =
√

λj ≥ 0.

Then we set uj = Avj/σj when σj 6= 0, and obtain (1). If m is greater than
the number of non-zero σj, complete u1, . . . , un to an orthonormal basis. So
we proved the theorem.

Now let us state it in terms of matrix factorization. Let V = [v1, . . . , vn]
be the matrix whose columns are vj. Let U = [u1, . . . , um] be the matrix
with columns uj They are orthogonal:

V T = V −1, UT = U−1

Multiplying V by A from the left, we obtain using (1):

AV = A[v1, . . . , vn] = [σ1u1, . . . , σnun] = UΣ,

where Σ = diag(σ1, . . . , σn). In other words,

A = UΣV T . (2)

The numbers σj are called singular values and the formula (2) is called the
singular value decomposition. In the case that m > n, we have to extend Σ
by adding zeros in the bottom so that it becomes an m×m matrix, and so
that (2) makes sense.

To find the SVD for a given matrix, just find eigenvalues and eigenvectors
of ATA. Order the eigenvalues and eigenvectors so that eigenvalues decrease.
Put eigenvectors vj as columns of V , and vectors Avj/σj as columns of U ,
where σj are positive square roots of positive λj. If m > n add some columns
to U using Gram–Schmidt process. The diagonal entries of Σ are positive
square roots of eigenvalues of ATA. Don’t forget to add m− n zeros rows if
m > n, so that Σ has the correct size.
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Remark. The columns of U are eigenvectors of AAT : indeed, multiplying
(1) from the left on AAT we obtain

AATAvj = σjAA
Tuj.

As ATAvj = λjvj, we have

Aλjvj = σAATuj,

and using (1) again
λjσjuj = σjAA

Tuj.

Dividing on σj we conclude that uj are eigenvectors of AA
T with eigenvalues

λj.
So ATA and AAT always have the same eigenvalues with the same mul-

tiplicity, except the zero eigenvalue.

Polar decompositions. Every square real matrix A can be written as a
product

A = SO,

where S is symmetric positive semidefinite, and O is orthogonal. Undeed,
we have

A = UΣV T = (UΣU−1)(UV T ),

so we can define S = UΣU−1 = UΣUT which is symmetric and positive
semidefinite, and O = UV T which is orthogonal.

Similarly we can write every square real matrix as

A = UΣV T = (UV −1)(V ΣV T ),

where UV −1 is orthogonal and V ΣV T is symmetric and positive semidefinite.
This generalizes he polar representation of a complex number.

Same arguments work for complex matrices, using Hermitian transpose
instead of the usual one. We obtain that every complex matrix can we written
in the form

A = UΣV ∗,

where U and V are unitary and σ symmetric and positive definite. In the
polar decompositions the matrix S will be symmetric positive definite and O
will be unitary.
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