Singular value decomposition

A. Eremenko

April 12, 2020

The problem addressed here is how can one simplify a linear transforma-
tion by choosing two different bases, one in the domain and one in the image.
Every linear transformation from R™ to R™ can be represented by an m x n
matrix in the standard basis. So we just consider the transformation

x— Az
for some arbitrary matrix A.
Theorem. For every A, there exists an orthonormal basis vy, ...,v, and an
orthonormal basis uy, ..., u, such that
Avy = oju;, 1<j<n, (1)

where o; > 0.

Remark. In the case that m < n this should be understood as o; = 0 for
7 >m.

Proof. Consider the matrix AT A (it is n x n). This matrix is symmetric
and positive semidefinite. Indeed

(ATAY = AT A,
and
e AT Az = (Ax)T (Ax) > 0,

by the positivity of the dot product.
By the Spectral Theorem for symmetric matrices, there is an orthonor-
mal basis v1,...,v, made of eigenvectors of ATA. We take it as a basis



in the domain of A, and we order this basis so that eigenvalues, are listed
in non-increasing order. As AT A is positive semidefinite, eigenvalues are
non-negative.

Now we prove that vectors Av; are orthogonal:

(Av))T Av; = o] AT Av; = Aol v;.

This is zero when ¢ # j. To convert Av; into orthonormal system we have to
divide these vectors by square roots of A;. Recall that \; are non-negative,

and denote
0; = \/)\7J Z 0.

Then we set u; = Avj/o; when o; # 0, and obtain (1). If m is greater than
the number of non-zero o;, complete u;, ..., u, to an orthonormal basis. So
we proved the theorem.

Now let us state it in terms of matrix factorization. Let V' = [vq,...,v,]
be the matrix whose columns are v;. Let U = [uy,...,u;) be the matrix
with columns u; They are orthogonal:

vi=y-t yur=u-!
Multiplying V' by A from the left, we obtain using (1):
AV = Alvy, ... 0] = o1, ..o oquy] = UY,
where 3 = diag(oy,...,0,). In other words,
A=UxvT (2)

The numbers o, are called singular values and the formula (2) is called the
singular value decomposition. In the case that m > n, we have to extend X
by adding zeros in the bottom so that it becomes an m x m matrix, and so
that (2) makes sense.

To find the SVD for a given matrix, just find eigenvalues and eigenvectors
of AT A. Order the eigenvalues and eigenvectors so that eigenvalues decrease.
Put eigenvectors v; as columns of V, and vectors Av;/o; as columns of U,
where o are positive square roots of positive A;. If m > n add some columns
to U using Gram—Schmidt process. The diagonal entries of X are positive
square roots of eigenvalues of AT A. Don’t forget to add m — n zeros rows if
m > n, so that X has the correct size.



Remark. The columns of U are eigenvectors of AAT: indeed, multiplying
(1) from the left on AA” we obtain

AATA/UJ‘ = UjAATUj.
As AT Av; = \jv;, we have
A)\j'l}j = UAATUj,

and using (1) again
)\jajuj = O'jAATUj.

Dividing on o; we conclude that u; are eigenvectors of AA” with eigenvalues
Aj.

So ATA and AAT always have the same eigenvalues with the same mul-
tiplicity, except the zero eigenvalue.

Polar decompositions. Every square real matrix A can be written as a

product
A =50,

where S is symmetric positive semidefinite, and O is orthogonal. Undeed,

we have
A=UxvT = (UsUu(Uvh,

so we can define S = UXU~! = UXU?T which is symmetric and positive
semidefinite, and O = UV7T which is orthogonal.
Similarly we can write every square real matrix as

A=Uxvl = wv-hHvzvh,

where UV ~! is orthogonal and VX V7T is symmetric and positive semidefinite.
This generalizes he polar representation of a complex number.

Same arguments work for complex matrices, using Hermitian transpose
instead of the usual one. We obtain that every complex matrix can we written
in the form

A=USV*,

where U and V' are unitary and o symmetric and positive definite. In the
polar decompositions the matrix S will be symmetric positive definite and O
will be unitary.



