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On Certain Differential Equations of the Second Order 
Atlied to Ilermite's Equation. 

BY EDWARD B. VAN VLECK. 

Hermite's differential equation 

d2uy - [n (n + l )p (u) + h] y du' 

can be thrown by the substitution 

x = p (u) or u- dx 
2Vf(x) = (x - el) (x- e2) (x - es) 

into the form 

f(x) +Y2 + 2x) dy n (n + 1)x +h y =O. dx 2 dx 4 

As is well known, it admits of two solutions whose product is a polynomial in x. 
Other differential equations of the second order which have the same or an 
analogous property have been given by Fuchs,* Brioschi,t Markoff,t Linde- 
mann,? and G. W. Hill.jj Markoff confines his attention to the hypergeometric 
equation, Fuchs and Brioschi to differential equations in which the coefficient of 

dy is one-half the derivative of the coefficient of d2y Lindemann, in his dis- dx dx' idmu, nhsds 
cussion of the "differential equation of the functions of the elliptic cylinder," a 
limiting form of Hermite's equation, proves that it admits of two solutions whose 
product is a holomorphic function. Hill's equation is an extension of this equa- 
tion, anld possesses the same property. 

* Annali di Matematica, Ser. II, t. IX. t Annali di Matematica, Ser. II, t. IX, p. 11. 
I Math. Ann., Bd. 28. ? Math. Ann., Bd. 22. II Acta Mathematica, Bd. 8. 
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VAN VLECK: On Certain Differential Equations of the Second Order, etc. 127 

The object of the first section of this paper is to determine in general what 
regular differential equations of the second order admit of two solutions whose 
product is a polynomial. It will be found that there are several distinct classes 
of such equations under which those hitherto considered are comprised as special 
cases. Incidentally we shall obtain a class of irregular equations with three 
singular points, which includes the equations of Lindemann and of Hill. 

The properties of the two solutions and of their quotient q will be developed 
in the second section. In particular, it will be shown that the monodromic 
group of substitutions of q can be thrown into the form 

and that, conversely, if the group of any regular differential equation can be 
thus expressed, there will be two solutions whose product is a polynomial 
multiplied by certain factors which correspond to the singular points and 
can be removed by an elementary substitution. So far as I am aware, the 
identity of these two classes of equations has not been hitherto noted. 
The other properties developed are for the most part extensions of properties 
given by Hermite and Klein for Hermite's equiation, but to effect the generaliza- 
tion a new method is employed which is independent of elliptic integrals. The 
third section of the paper is devoted chiefly to an investigation of the position of 
the real roots of the polynomial product with reference to the singular points, 
when these points are real and their number is limited to four. Klein's investi- 
gation* for Hermite's equation here also paves the way, but the " Oscillation 
theorem " upon which it is based is inadequate to the more general discussion, 
and recourse is had to the method of conformal representation. 

I. 

?1. Any regular linear differential equation of the second order with a sin- 
gular point at X may be written in the form 

d2y _ __ _ dy 
dx' + - e a dxe o [1 

+(A'-D+- e . (xe) Y = a a 

*Math. Ann., Bd. 40. 
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128 VAN VLECK: On Certain Differential Equaations of the 

where 
V(xt+. ) + +x"-r [2] 

The singular points ei will here be supposed to be given, but the "accessory 
parameters" a1, 0 . I, _2 and the exponents X4, %/' are to be so determined 
that the product of two particular integrals shall be a polynomial P" of the 
nth degree. The two fundamental integrals for ei have in general the form 

P2z-[i (x- ej)'][I + B (x-ei) + C'(x -ei)2 + . [3] 
P;W= [i(x - e,)-' ] [I + BI(x ei) + C'(x- ei) + ..]J 

the leading coefficient in each series for convenience being taken equal to unity. 
When, however, the difference of the two exponents is an integer, one of these 
integrals must in general be modified by the introduction of a logarithmic term. 
In the first factor of each expansion a definite sign is to be attached to the bino- 
mial, but for the present it is immaterial which sign is selected. The corres- 
ponding expansions for the singular point X are 

[4 (Ijj[1+ $ + 2 +-0.0. 

and a similar series for PI 
The foregoing expansions hold only over a limited portion of the x-plane. 

When, however, the product of two solutions is a polynomial, the integration of 
the equation can be effected by familiar methods, and its general integral will 
be expressed in terms of two particular integrals which hold over the entire 
plane. Two cases are possible, according as the two solutions forming the poly- 
nomial product are identical or distinct. In either case the polynomial itself 
satisfies the differential equation 

dy +3p dX2 + +2r+4q) +(4Pq + 2 dx ) = -0 

where p and q denote the coefficients of dy and of y in [1], and it is obtained by 

substituting for y in this equation a polynomial of the nth degree with unknown 
coefficients. When the two solutions are identical,- their common value Yi is the 
square root of the polynomial. A second integral can be obtained by means of 
the well-known relation 

i=r 

YlY/ ,- Y1Y2 = (x - e)yi +-, [4] 
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Second Order Allied to Hermite's Equation. 129 

which exists between any two independent integrals of the equation. This gives 
for the quotient of the two integrals 

1/2 -rCdx 
= j ~Jyl(x -e)')l- ,- [5] 

In the second case, if y,, y2 represent the distinct solutions, differentiating the 
equation y, y2 = P. and combining with [3], we find 

C/, d* b ? 
lh= C' aV^Pn e PJ.n.(_elA 'i| [6] 

- af d i'x 
y2 = n/ e Pn l (X- e)l-zN3 

where C, C' and C" are constants. These formula hold equally well when for 
Pn a holomorphic function can be substituted. 

?2. We proceed now to determine the conditions under which the square of 
a single solution y1 can be a polynomial of the nth degree. Let y1 at any singu- 
lar point in the finite plane be expressed as aP?< + bPV. Since the expansion 
of its square into a series is to begin either with a constant or with a positive 
integral power of x - ei, the exponents XI and ' must be restricted in value. 
If neither a nor b is zero, both exponents must be positive integers (including 
zero) or each must be the half of an odd positive integer. If, on the other hand, 
either a or b is zero, y, is one of the fundamental integrals for ei, and only the 
single exponent which belongs to this integral is thus restricted. It is necessary, 
therefore, that at least one exponent of each singular point in the finite plane, 
say ?f', shall be equal to the half of a non-negative integer. Also, since the 
square of y1 is a polynomial of the nth degree, one of the two exponents for 

infinity, say Ax', must be equal to - n2. The proposed solution can therefore 
2 

now be expressed in the forrn H (x - ej)x Y, where Y is a polynomial whose 

degree is n' - 2 - a' =-(Ax' + 1%I"). The substitution of this in [1] gives 2 

as the differential equation for Y 

d2Y + 1- i dY 
dX2 -ei dx 

t;%1 + V,IIv%f / I ( ;%ll +- I A'Xr-3 1 
BXr-31+ + (. ? ) + A + B y= [7] H1 (x - ei) 
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130 VAN VLECK: On Certain Differential Equations of the 

where Xi is the exponent-difference X4- -X'. This equation has been shown by 
Heine* to admit of a polynomial solution of degree n', provided the parameters 
A', B', .... are properly determined, and the number of such determinations for 
any given set of exponent-differences Xi is 

(n', r-1) = (n + 1)(n/ + 2) . .(n + r-2) [8] 

We conclude therefore that the differential equation [1] will admit of a particular 
solution whose square is a polynomial of the nth degree only when the exponents sati'sfy 

the following conditions: 
(1). One exponent A" of each singular point in the finite plane must be half of a 

non-negative integer. 

(2). i - muv/' must be a non-negative integer n'. 
2 

(3). One exponent of the singular point at infty must be equal ton- 2 
When any set of exponents is given which conform to these conditions, the 

number of such equations will be (n', r - 1). 
It will be noticed that when neither a nor b is zero, the exponent-difference 

Xi must be an integer. The logarithmic term, which ordinarily appears in the 
expansioni of Pk or PV when this is the case, must necessarily be eliminated by 
the conditions imposed upon the accessory parameters; that is, ei is an apparent 
singular point. Furthermore, since neither exponent is negative, it follows that 
ei cannot be an infinity of any solution of [1]. Hence the product of any two 
solutions will be holomorphic in the vicinity of the point. 

?3. The simplest application of this result is to the differential equation for 
the hypergeometric series F(a, fi, y, x). The exponents for this equation are 

o X 1 
- y a y- a - . If, therefore, n is even, the sufficient condition is 

that a or shall be equal to- 2; if n is odd, not only must a or X3 be equal 

to- n 
X but either 1-7 or y-a must be the half of an odd positive 

*Berliner Monatsberichte, 1864, or Handbuch der Kugelfunctionen, Bd. I, s. 478. 

t If r = 2, this number is tnity. 
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Second Order Allied to Hermite's Equation. 131 

integer not greater than n These results comprise four of the six cases given 

by Markoff in which the product of two solutions of the equation is a polyno- 
mial of the nth degree. In two of these four cases he fails, however, to notice 
that the polynomial is the square of a single solution. 

?4. We have now to consider the conditions under which the product of 
two distinct solutions will be a polynomial. Let the requirement be first made 
that it shall be finite and one-valued. In the vicinity of ei it will have the form 

Y1Y2 = a (Pt)2 + b (P)2 + cP P. 

If neither a nor b nor c is zero, it can be argued in the same manner as before, 
that the exponents are both non-negative integers or are each the half of an odd 
positive integer, and that ei is again an apparent singular point, in the vicinity 
of which every product of two integrals is holomorphic. The same conclusion 
holds if either a or b singly is zero. If c is zero, the only condition is that the 
two exponents are each the half of a non-negative integer. Hence unless ei is 
again an apparent singular point, one exponent must be half of an odd positive 
integer and the other a non-negative integer. Finally, if a and b are both zero, 

A +X' shall be a non-negative integer. Setting a-side the apparent singular 
points, we have then some such scheme as 

el e2 e3 ..er 

n ml' + ...i/ I/ 

for the exponents of the singular points in the finite plane, the m being zero or positive 
integers. 

Such a scheine suffices to ensure at each of the points separately the exist- 
ence of a one-valued finite product which has either the form a (P4)2 + 6 (P4')2 

or cP4" P4'. We have next to learn under what conditions the product of two 

integrals will be one-valued when x makes a circuit around two singular points. 
Let el and e2 be two singular points whose circles of convergence overlap, and 

suppose also their exponents to have the values written down in the above 
scheme. Place 

p4=,- ap42 + f3P.2., 
}9] 

1 - + AP-2 [ 
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132 VAN VLECK: On Certain Differential Equations of the 

In the vicinity of el the product can be expressed as 

ai (P2,)2 + b, (PX'C)2 + Cl Pil Pxi , 
in the vicinity of e2 as 

(a1ca2 + by1)2 + c1oQ)(PX2)2 + (a1g32 + b1A2 + clgi)(PY2")2 

+ (2alaf + 2b17S + claO + clry) PA2 PV" . [10] 

By a ci-rcuit about e1 the sign of cl is changed; by one about e2, the sign of the 
coefficient of P2 P"'. Comparing [10] with its value after both changes have 
been made, we obtain as the conditions that the product -shall remain unaltered 
by a circuit around the two points, 

c1 0, alagl+b bjy= [=1] 

There is, therefore, save for a numerical factor, one product of two integrals, and only 
one, which remains unaltered for a circuit about e, and e2.* In the region common 
to the two circles of convergence this product can be written in either of the 
forms 

a, (P,)2 + b, (PYl)2, (ala + b 2)(P)2 + (al32 + b18s)(P2 )2, 

which shows that the product is also unaltered for a circuit around el and e2 
separately. 

There remain yet two other possible exponent-schemes for el and e2 to be 

examined, namely, (+ ml A + Xt = n2) and ( + a m' = in, a2 + X1 = M2), 

but in neither case can a one-valued product be obtained without a specialization 
of the accessory parameters of the differential equation. For, assuming the first 
case, a, (PA1)2 + b1 (PY)2 must in the vicinity of e2 become equal to c2 P;2 P?2. 

But if cl = 0, the coefficients of (P')2 and (P )2 in [10] can vanish only when 
a 2 32 = 0, and this imposes a condition upon the parameters of the differen- 

tial equation. On the second assumption Px?, P" in the vicinity of e2 can differ 
from Px, PY2 only by constant factors, and this involves a two-fold specializa- 
tion of the parameters. 

* In case the two circles of convergence do not overlap, the reasoning still holds good. The right- 
hind members of [9] must then be taken to represent what the left-hand members become, when con- 
tinued analytically along some definite path to the vicinity of e2. 
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Second Order Allied to Dermite's Equation. 133 

The conclusions which have been reached for the singular points in the 
finite plane apply with only slight modifications to the point c0. When the 
product of two integrals is here one-valued, either (1) the point is an apparent 
singular point, and %1, 4' are congruent both to g or both to 0, mod. 1; or (2) 
they are congruent to . and 0 respectively; or (3) X + 2' is an integer. The 
exponents must be still further restricted if the product is a polynomial of the 

nth degree. When expanded in series for x = o, it begins with (I). Hence 

in the first two of the three cases just specified, the exponent which is the 

smaller algebraically must be _ n2 and in the third case the sum of the two 
2 

exponents must be -n. 

?5. These considerations suffice for the solution of our problem, when there 
are three singular points el, e2, m. The differential equation then contains no 
accessory parameter. To obtain a one-valued product we are therefore limited 
to taking two pairs of exponents which differ by the half of an odd integer. To 
make this product a polynomial, the exponents must also be so chosen that the 
product shall be finite in el and e2 and have at Xo a pole of the nth order. Accord- 
ingly we can take for the exponents either of the two following sets of values, 
but no others: 

/ el e2 X 

I+ ml + m/ i,+;^ -n 

el e2 

II [ g+ ml 2+ 2/-2 2 n, n, > n 

2 

the m being positive integers and n0, an integer, positive or negative, so chosen as 
to make in agreement with [2] the sum of the six exponents equal to unity. 

The first of these exponent schemes comprises those equations which can be 
reduced by elementary transformations to the hypergeometric formn without 
destroying the polynomial form of the product. For if m' = m" ?=0 and 
e= 1, e2 = 0, we have at once the hypergeometric equation. When these con- 

18 

This content downloaded  on Mon, 28 Jan 2013 18:36:50 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


134 VAN VLECK: On Certain Differential Equations of the 

stants have other values, an entire linear transformation of the independent 
variable will reduce el, e2 to 0, 1, and the substitution 

y = (x- el)" (x - e2Y2 y,[12] 

in which , A denote respectively the smaller of the two exponents at e1, e2 will 
reduce one of the exponents at each of these points to zero. Applying, in par- 
ticular, the exponent scheme to the differential equation for F(a, l3, y', x), we 
see that the product of two distinct solutions of that equation will be a polyno- 
mial, when a, i3, y have values in accordance with the following scheme: 

o 01 

\-/! Ml a++n YmX=+ ml+m2=n. 

o 0 

This scheme embraces the two cases distinguished in Markoff's investigatioil, 
which were not included under ?3. 

?6. The same line of reasoning inay be applied to a differential equation 

d2 +r 2 - 4+1 2 2/ dy 
dZ; x - el Xz-e2 dx 

(X-el) + (z-e2)2 + (x-el)(x -e2)/ 

with two singular points in the finite plane and an essential singularity at m. 
The product of two solutions will be holomorphic when 

A1 - g+ 9 X 2 I + M/ 

To this form both "the differential equation of the functions of the elliptic 
cylinder " 

d2y - (A cos p+B)y 
d4p2 

and also the equation 

d2y (A+B cos 2p + Ccos 4p + *)Y 
dcp2 

which Hill uses in his calculation of the motion of the lunar perigee, " so far as 
it depends-on the mean motions of the sun and moon," can be reduced by the 
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Second Order AIllied to Hermite's Equation. 135 

substitution x = cos 2p. The resulting finite singular points and exponents are 

+~~~~~ (? O O) 

?7. The case in which there are four singular points can be discharged with 
almost equal rapidity. The sum of the eight exponents is 2 and the differential 
equation contains one arbitrary parameter. Consider first the following scheme 
of exponents: 

/ el el e. so 

II l+ M/ + M / + n. 

n 
ml 7 m2' M3' 2/ 

in which the m and n0, have the same significance as before. It has been pre- 
viously demonstrated that, except for a multiplicative constant, there is one, and 
only one, product whose value is independent of a circuit about two singular 
points, and that the same product is independent of a circuit about either sepa- 
rately. Since a circuit about two points is at the same time a circuit around the 
other two, it follows that there is one, and only one, product which is one-valued 
over the entire plane. The exponents show that it is everywhere finite except 
at x, where it has a pole of order n. It is therefore a polynomial of the nth 

degree. Special interest attaches to this case, since no restriction whatever has 
been placed upon the arbitrary parameters. We shall subsequently see that this 
is impossible when the number of singular points is greater than four. 

The general differential equation given by the foregoing scheme includes 
Hermite's equation as a special case. To obtain the latter we have only to 
place mln _ = mm/ = 0 and n0 = n + 1 As already noticed, the sub- 
stitution xa p (u) will remove the first derivative from this equation and reduce 
it to the form 

=2y [n (n + 1)_p (u) + h] y. 

A corresponding reduction can be made in the more general equation. First, by 
a substitution similar to [12], we may reduce the differential equation to one 
which has an exponent-scheme of the form III but in which one exponent mY' 
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136 VAN VLECK: On Certain Differential Equations of the 

of each finite singular point is equal to zero. When this is done, the substitu- 
tion of the new independent variable 

ir ~~~~~~dx [3 
j(X-el)- m**(x-e3) 

n 
(x -el) *. (x -e3)' [13] 

which makes x an elliptic function of u, say pi (u), will remove the second 
derivative and reduce the equation to the form 

d_y n.npl + B 

du2 - (Pi e1)m*. (Pl- e3)2m" 

' 

?8. A second group of equations with four singular points can be obtained 
by combining with two such singular points as occur in III an apparent singular 
point. Since the sum of the eight exponents is 2, two exponents for the fourth 
singular point must be chosen whose sum is an integer. According as the appa- 
rent singular point is at X or in the finite plane, the exponents will therefore be 

Mql + Am21 + i2\ IV tA /=}7 

m+fi+t% m=+ -n 
m~+ m + 

3 V 
2 2 

The accessory paramneters in the differential equation will in either case be 
determiined by the condition that the logarithmic term in the expansions for the 
apparent singular point must be made to vanish. 

With the first of these two exponent schemes a differential equation first 
given by Brioschi* and later applied by Haentzschelt to the theory of potential 
is closely connected. Haentzschel's form of the equation is 

d2y_ [(M2 J)p (U4)_ h] y, dU2 

in which m is an integer equal to Brioschi's n2 If we free the equation 

from doubly periodic coefficients by the substitution x p (u), it becomes 

(4xg2 g3) d2 + (6x2 _g2) [(m2 ) -hy = . 

*Annali di Matematica, Serie 2, t. 9. 
t " Studien uber die Reduction der Potentialgleichung, " p. 54. 
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Second Order Allied to Hermite's Equation 137 

Both writers prove that this equation admits of two integrals whose product is a 
polynomial multiplied into C/$x - e,. Brioschi, however, appears to leave ht arbi- 
trary, an oversight which is corrected by Haentzschel. The exponent scheme for 

the equation is - (m + ;) ,but by setting y = x-e3 ey it may 

lg g W m + 1 
be reduced to 2 and thus brought under IV. Brioschi 

rn-lJ 
0 0 - - 2 / 

gives the equation as an instance in which the square of the product of two solu- 
tions is a polynomial, but the modification just made shows that the equation 
does not differ essentially from those which we are here considering. Indeed, 
more generally, whenever the product of two solutions of a regular differential 
equation containing any number of singular points is equal to a polynomial mul- 
tiplied by a product of powers of the binomial x- ei, these factors may be 
removed and the equation reduced to the form treated in this paper by an appro- 
priate substitution of the form 

y= Il(x-e )aiz [14] 

?9. In the general case, where r, the nunmber of singular points in the finite 
plane, is greater than 3, the differential equation contains r - 2 accessory 
parameters. On these we are at liberty to impose an equal number of condi- 
tions in order to secure, if possible, a polynomial product. The consistency of 
the conditions thus imposed will have its verification in the existence of the poly- 
gons hereafter to be introduced in connection with the conformal representation 
of q, the quotient of two solutions. Consider first the case in which the expo- 
nents are 

n, 

\ml M// I..g+ m/f n 

We have seen that, irrespective of the values of the accessory parameters, there 
is one product of two integrals which is one-valued for circuits around 
e1 and e2. Let it be required that this product shall be one-valued for circuits 
around the remaining r - 1 singular points. If r is even, the exponent differ- 
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138 VAN VLECK: On Certain Diferential Equations of the 

ence for the point X is an integer. One condition must consequently be 
imposed to remove from P" or P"' the logarithmic term which would naturally 
appear. This leaves r - 2 singular points, all of the same character, and r - 3 
independent parameters. If r is odd, one exponent for X is an integer and the 
other is half of an odd integer. Whether then r is even or odd, the singular points 
which remain for consideration are all of the same character, and their num- 
ber exceeds by a unit the number of remaining parameters. Of these singular 
points, two may be disregarded, for it has been shown that when the sum of 
the exponents of each of the two points is the half of an odd integer, the product 
of two integrals will be one-valued for circuits around these points, provided it is 
one-valued for circuits around every other point. The number of singular points 
left is therefore now one less than the number of parameters. At each of these 
points let y, y, be expressed in the form ai (Pi)2 + bi (P4)2 + cP2 PA ' The 
values of the coefficients here obviously depend upon the accessory parameters 
of the differential equation. The condition that the product shall be one-valued 
over the entire plane requires that each coefficient ci shall vanish. Since this 
imposes a single condition upon the parameters for each remaining singular 
point, a one-valued product can be obtained by imposing a total number of con- 
ditions which is one less than the number of parameters. When this is effected, 
the values of the exponents ensure that the product will be a polynomial. To 
each set of exponents I there belongs therefore a differential equation containing a 
single arbiitrary parameter, for which the product of two particular solutions will be 
a polynomial. 

This result may be regarded as an extension of one obtained by Brioschi 

for differential equations in which the coefficient of dy is one-half of the deriva- 
d2-~~~~d 

tive of the coefficient of d2y1 Such an equation is evidently obtained by placing dx 2 

all the m of scheme I equal to 0. 
Similar considerations apply to such exponent schemes as 

II( + ml * lr +x" n 

I1 1 o 0 o 

ig+mi ... . +m'_+ ...1 2 
III / + X' = m | . 

ml Mr- " 2/ 
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Second Order Allied to Hermite's Equation. 139 

Since, however, the introduction of a singular point whose exponent-sum is 
an integer imposes two conditions upon the parameters, the total number of con- 
ditions will be equal to the number of accessory parameters. They will, there- 
fore, be completely determined. It follows also that a scheme with more than 
one pair of such exponents will be in general impossible. It is, however, con- 
ceivable that in exceptional cases the conditions imposed at the several singular 
points might not all be independent. Cases may therefore arise where more 
than one such pair of exponents is present, as will indeed be obvious later when 
the conformal representation is considered. 

This exhausts the possibilities of our problem except in so far as apparent 
singular points are introduced instead of those whose exponent-sums are the 
halves of odd integers. This can be done, since an apparent singular point, like 
the point it replaces, imposes but a single condition upon the accessory parame- 
ters. The number of points whose exponent-sums are the halves of odd integers 
must not, however, be made less than 2. 

II. 

?10. To distinguish briefly between the singular points whose exponent- 
sums are the halves of odd integers and those whose exponent-sums are integers, 
we will hereafter refer to them respectively as singular points of the first and 
second kinds. When the two solutions are distinct, we can, by a suitable substi- 
tution of the form [14], reduce the exponents for a singular point of the first 
kind to j + rin, 0 and those for a singular point of the second kind to ? 2f 

2 
without destroying the property that the product of the two solutions is a poly- 
nomial. In the same manner the exponents for an apparent singular point can 
be reduced to zero and a positive integer. It becomes then what has been 
termed a semi-singular point, in the vicinity of which all solutions can be 
expanded in an ordinary power series. For convenience we will henceforth 
assume that these reductions have been made for all the singular'points. The 
only effect of the reductions upon the polynomial is to remove from it all the 
factors x - ei. 

?11. At any singular point of the first kind the two solutions can be 
expressed as follows: 

Y1 = C (Vai P?+ VJ - /b Pmi+9X Y2 = PO - PmvPi+i) 
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140 VAN VLECK: On Certain Di,fferential Equations of the 

When x describes a circuit around the point, these will be changed into 

Y1 = 7Y2, Y 
1 

Yi 

The result of a circuit around two such points is therefore to multiply the one solu- 

tion by a constant p, the other by its reciprocal - . If, now, only singular points 

of the first kind are present, a hyperelliptic integral similar to [13] may be 
introduced as the independent variable in place of x. Since the periods of u 
are due to circuits of x around pairs of singular points, the proposition last enun- 
ciated shows that there are two solutions of the differential equation, each of which 
is multiplied only by a constant whenever a period is added to u . This theorem is 

well known in the case of Hermite's equation, the two solutions being then ordi- 
nary doubly periodic functions of the second class. In Hill's equation* the mul- 
tiplication results upon the addition of the period 2a to the argument P. 

When the circles of convergence of the two singular points overlap, a 
formula can be given for the computation of p. Suppose the two points to be 

el X e2. By a circuit around these points V/a, Po i / - b, Pm'T'+ will be replaced 

by (/a1ja =F V/-b ,y) P- (V F q V - b1 A) Pn2 + 1, or, expressed in terms of 
PO, pm] + with the help of equations [9] and [11], by 

(Vai P' -C V-b1 P,mP?) (j + y =' 2V/ aiy3)S 

We have therefore the formula 

0 + 2y =F 2Vac3yU [15] 

A circuit around an apparent singular point is obviously without effect upon 
the two solutions. On the other hand, near a singular point of the second kind, 
each solution is, except for a constant factor, identical with one of the two funda- 
mental integrals, and they will therefore be multiplied, the one by e+2ifrfi and the 
other by e'2t7fA, where x describes a circuit around the point. Combining these 
results with the preceding we obtain the following noteworthy proposition: 

*See either Hill's article in the 8th volume of the Acta Mathematica or one by Callandreau, 
Astronomische Nachrichten, No. 2547. 
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Second Order Allied to flermite's Equation. 141 

If the two solutions, whose product is the polynomial, are selected, as the bases of 
the monodromic group of substitutions of the equation, this group will take the form 

I Yi- 5Y2 Y2- -' 7 

or II l=py, - -2 Y2 or 
~~~~~~~~~~2- 

?12. The essential character of the group of a linear equation of the second 

order is more commonly exhibited by means of the quotient Y = Yi For the 
Y2 

equation under discussion the substitutions of K have the form 
- 2 

I. w , or II. w o [16] 

In the Autographie of Klein's lectures upon "Linear Differential Equa- 
tions," 1894, p. 148, a list of 11 cases is given in which the substitutions are sim- 

pler than the general substitution r = a + Most of the differential equa- 
yn + 

tions which correspond to these cases are well known, as for instance the equa- 
tions belonging to the groups of the regular solids. The chief case which has 
not received a general investigation is that in which the group has the form to 
which we have just been led by the consideration of the polynomial product. 

Conversely, if for any regular differential equation the group of n - Yi can be 
Y2 

expressed in the form [16], the product of the two solutions Yl, y2 must either be a 
polynomial or a polynomial multiplied by powers of the binomials x - ei, and the 
latter case can evidently be reduced to the former by such a transformation as [14]. 
The form of the substitutions of the group shows, in fact, that the product is 
multiplied by a constant when x describes a loop enclosing one or more singular 
points. Such a product is expressible as a holomorphic function multiplied into 
powers of the x - ei which correspond to the multiplicative constants and to the 
infinities of the product. Moreover, since the diffbrential equation is supposed 
regular, the holomorphic factor must have a pole for x =, and hence it is a 
polynomial. 

?13. We shall hereafter confine our attention to real differential equations, 
i. e. to those in which all parameters, whether singular points, exponents, or 

19 
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142 VAN VLECK: On Certain Differential Equations of the 

accessory parameters, are real. Subscripts will be assigned to singular points 
of the first and second kinds according to the order in which they occur on the 
x-axis, the apparent singular points being, for convenience, omitted. We will 
now consider some properties of the solutions which relate to the segments into 
which the axis is thereby divided. 

Consider first the four fundamental integrals which belong to the two 
extremities of any segment. Each integral has been defined by a power-series 
[3] which holds throughout a portion or the whole of this segment. Since the 
differential equation is real, the coefficients of each series must be real, and the 
signs in [3], which till now have been left arbitrary, can be so chosen that the 
integrals shall be real as long as the series converge. But any solution of the 
differential equation which is real along a finite portion of the axis, will, if con- 
tinued analytically, remain real, until the first singular point is reached wlhere 
an ordinary power-series fails to hold. The four fundamental integrals, when 
thus continued, will therefore be real throughout the entire segment irrespective 
of the apparent singular points which it contains. If, now, in [9], whether the 
circles of convergence of e1 and e2 overlap or not, the right-hand menmbers of the 
equation are taken to represent what the left-hand members become when con- 
tinued analytically from the vicinity of el to that of e2, the constants a, I, y and 
3 must be real. It follows that p in formuila [15] is either a real quantity or a 
complex imaginary with unit modulus according as a(y3 is positive or negative. 
The substitutions which ressult from a circuit around two consecutive singular points 

e,_1 and ei of thefirst 7ind must therefore be either both hyperbolic or both elliptic. 
Following a precedent set by Klein, we shall apply the terms hyperbolic 

and elliptic not only to the substitution but to the segment e_I ei around which 
the corresponding circuit is made. Equation [11] shows that the sign of agyA 

will be opposite to that of a,. Hence in a hyperbolic segment the product 

can be expressed as A4 (PO)2 - B? (PI",+')2, and in an elliptic segment as 
A? (P)2+BR(Pmi+?)2, in both of which Ai and Bi denote real constants. The two 
component solutions may therefore be so taken as to be real throughout a hyper- 
bolic segment; on the other hand, in an elliptic segment, they will be conjugate 
imaginaries. A segment, one or both of whose extremities are singular points 
of the second kind, will here be classed with the hyperbolic segments, since in 
this segment both solutions can be taken as real. This follows from the fact 
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Second Order Allied to Hermite's Equation. 143 

that in the vicinity of such a point the two solutions differ only by constant 
factors from the two real fundamental integrals. On the other hand, the seg- 
ments which terminate in a singular point of the first kind are the one 
elliptic and the other hyperbolic, because the sign of the second term of 
A2(P?)2B-(Pm% +B )2 will be changed when x describes a circuit around ei. The 
order of succession of the segments between any singular _point of the second kind and 
the next point of the same kind is therefore a definite one. The hyperbolic and elliptic 
segments alternate with each other, beginning and ending with a hyperbolic segment. 
In agreement with this, the number of singular points of the first kind included 
between two consecutive points of the second kind must be even, as must also 
be the total number of points of the first kind. 

A difference between the two varieties of segments again appears, when the 
roots of the polynomial are considered. In an elliptic segment the polynomial 
consists of the sum of two positive terms. Both of these cannot simultaneously 
vanish at any point of the segment, for if this were possible, two independent 
solutions of the differential equation would have at this point a common real 
root, which contradicts a well-known theorem concerning the alternation of the 
real roots. It follows therefore that the real roots of the polynomial are situated 
only in the hyperbolic segments. 

?14. The foregoing theory can be advantageously set forth, and might, 
indeed, be independently developed, with the aid of the theory of conformal rep- 
resentation. As is well-known, the quotient r of two independent solutions of 
[1] builds the positive half of the x-plane conformally upon a polygon 
El E2 .. Er Ec,. whose sides are arcs of circles. The angles at the vertices 
which correspond to the singular points e are successively equal to 
%1X7%i ...., ?4 it. The conformity of the representation ceases not only at the 
vertices but also at the points T of the boundary which correspond to the appa- 
rent singular points. The latter points will, however, not be here classed with 
the vertices of the polygon. The angle between the two arcs which meet in 
such a point is a multiple of xt, and, because there is no logarithmic term in 
the expansion of K at an apparent singular point, the two arcs must be arcs of 
a common circle. Hence the point is to be regarded as a sort of turning-point 
(see Fig. 1) where the direction of a side is reversed one or more times.* 

*For a further discussion of such points, see my article in the 16th volume of the American 
Journal. 
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Fic I 

The general shape of the polygon can be determined from the following con- 
siderations connected with the substitution-group of n. If the polygon be 
reflected on any one of its sides, we shall have a new polygon which is the image 
of the negative half-plane. A reflection of the second polygon upon one of its 
sides gives a second image of the positive half-plane which is connected with the 
first by a substitution of the group of n. If we suppose that the first reflection 
is on the side Ei_1Ej and the second upon EiE' l (Fig. 2), the substitution will 
be due to a circuit around ei. The invariant points of this substitution will be 
the intersections of these two sides, produced if necessary, and hence also of the 
sides E-1 Ei and Es E1 + I of the first polygon. If ei is a singular point of the 
second kind, the substitution is of the form (16, II), whose invariant points are 

= 0 and q = ox. The two sides E., Ei and Eii E l? are therefore parts of 
straight lines which meet at the origin [Fig. 2 (a)]. If the singular point is of 

f 2,-iF X 

cz ~ r~n 
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Second Order Allied to Hermite's Equation. 145 

the first kind, the substitution is of the form (16, I), whose invariant points, 
4? C, are symmetrically situated with respect to the origin. Since the angle at Ei 
is (m,+g) xz, the two circles of which Ei -1 E, and Ei Ei l1 are arcs which cut each 
other in these points at right angles. But one of the singular points adjacent to 
ei, say ei +1, must likewise be a singular point of the first kind. It follows also 
that E Ej+j (see (b) of Fig. 2) must cut a second circle at right angles and in 
two points which are symmetrically situated with respect to the origin. Evi- 
dently therefore EiE, l is the arc of a circle whose center is at the origin and 
B E-_E the segment of a straight line which passes through the origin, or vi,ce 
versa. These conclusions concerning the shape of the polygon can be summed 
up in the following statement: 

When the two solutions yl, Y2 are distinct, the sides of the polygon are arcs of 
concentric circles and segment of straight lines which cut the circles at right angles. 

?15. The methods by which polygons of this character are constructed will 
be discussed in a later paragraph. In the meantime some of the conclusions 
already obtained may be easily verified by means of the conformal representa- 
tion. To a circuit around two consecutive singular points of the first kind cor- 
responds a series of four reflections, as indicated in Fig. 2 (b). These result 
either in a simple revolution of the initial polygon through an angle (P or in 
increasing the distance of all its points from the origin in the ratio p2: 1. In 
other words, the resulting substitution is either elliptic or hyperbolic. Clearly 
also the straight sides correspond to the hyperbolic and the circular sides to the 
elliptic segments. The theorem which has been already given concerning the 
alternation of these two kinds of segments is now immediately evident from an 
inspection of the figures. Furthermore, the roots of Yi and Y2 are respectively 
the zeros and the infinities of their quotient w. Hence we conclude that if a 
side Ei Ei ? 1 of the polygon _passes p times in all through the zero and infinity points 
of the n-plane, the polynomial has p real roots situated between ei and e + ?1; if also 
the interior of the polygon includes the zero and infinity points q times yin all, q pairs 
of roots of the polynomial are imaginary. Since also only the straight sides of the 
polygon can pass throug,h the origin or infinity, the real roots must lie exclu- 
sively in the hyperbolic segments. 

?16. The conformal representation also makes apparent the significance of 
the singular points of the second kind. Should -one of the circular sides of a 
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polygon be contracted to a point situated either at the origin or at X (Fig. 3), 

VcI G3 

the union of its extremities would evidently produce a vertex which would cor- 
respond to a singular point of the second kind. It is also obvious, conversely, 
that any such vertex can be regarded as having been formed in this manner. 
Hence any differential equation with singular points of the second kind which satis- 
fies the conditions of our problem. can be regarded as the limit of an equation contain- 
ing only singular points of the first 7kind, each singular point of the second kind being 
created by the union of two points which terminate an elliptic segment. Thus, for 
example, when m1lm2 = O, the hypergeometric equations discussed at the close 
of ?5 are limiting cases of Hermite's equation. It is sometimes possible, also 
without changing the angles of the polygon, to contract a circular side to a point 
which does not coincide either with the origin or infinity (see again Fig. 3). In such 
instances the contraction of an elliptic segment gives rise to an apparent singular 
point. The result is also the same when it is possible to shrink a hyperbolic seg- 
ment to a point. From these instances it is clear that the various limiting forms 
of a given differential equation can be immediately inferred, when the shape of the 
corresponding polygon is known. In this respect, as in many others, the method 
of conformal representation has a decided superiority to analytical methods. 

III. 

?17. Our attention will now be restricted exclusively to such of our differ- 
ential equations as contain only singular points of the first kind. If the number 
of these points is greater than 3, the differential equation will contain an arbi- 
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trary parameter which can be continuously varied. The polygon undergoes in 
consequence a continuous deformation, and the properties of the polynomial 
product also change. The present section will be devoted to a study of some of 
the changes in its properties which can be discovered by means of the conformal 
representation. Special attention will be paid to the changes in the distribution 
of the real roots of the polynomial among the segments of the axis of x. 

?18. The general theory of these equations is similar to the well-known 
theory of Hermnite's equation. When the parameter of the latter is continuously 
varied from - X to + o, for certain critical values the two solutions forming 
the polynomial product become identical. The equation then becomes a Lame's 
equation, and the two identical solutions, when divested of all factors (x-el)"', 
(X - e2)X27 (X - e3)x3, are simnply Lamb polynomials. At the same time a 
change takes place in the distribution of the roots of the polynomiial product 
among the segments of the axis. We will, now show that for our more 
general differential equations the changes in the distribution of the roots 
occur only when the two solutions become identical. Since the coefficients 
of the polynomial are real, a change can be supposed to take place in only two 
ways: either (1) by the passage of one or more roots through a singular point 
from one segmnent into the next, or (2) by the conversion of pairs of real roots 
into conjugate imaginary roots. In the latter case a multiple real root must 

.first be formed. But it is well-known that no solution can have a multiple root 
at a non-singular point of the plane, neither can two independent solutions have 
a common real root at such a point. It remains therefore only to examine when 
the polynomial has a root which coincides with a singular point. This again is 
impossible when the two solutions are distinct, because then in the vicinity of 
the point the polynomial may be written in the form A2 (PI)2 + B2 (P! + 1)2, only 
the second term of which vanishes for x e,. The changes in the distribution of 
the roots of the polynomial can therefore take place only when the two solutions 
become identical. 

?19. When this is the case, a change simultaneously occurs in the character 
of the conformal representation. To determine the shape of the polygon we 
must take as before the quotient of two independent solutions. One of these, 
Yl, may be assumed to be, as in section I, the square root of the polynomial, and 
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can accordingly be written in the form (x -elx .. . (x - er) ?rarp, where each E is 

either zero or unity and P denotes a polynomial which does naot vanish at any 
singular point. Formula [5] then shows that the generating substitutions of the 
group of n will have the form 

K = E 2ivAtt + - K +d. 

One of the two invariant points of every such substitution is o, and it follows 
that every side of the polygon, produced if necessary, must pass through this 
point. When, therefore, the two solutions forming the polynomial are coincident, the 

polygon js rectilinear. 

The position of the roots of the polynomial product can be directly deduced 
from the polygon. For it is clear from [5] that the roots of y, are the only 
infinities of H . Hence if a side E, E, +1 of the polygon passes p-time.s through Go, p 

roots are situated between e, and ei +; if the interior of the polygon includes the 

point X q times, q pairs of roots are imaginary; and lastly, if a vertex of the polygon 

is situated at , the corresponding singular point is a root. It will be noticed that 

each of these roots is a'double root of the polynomial product unless it coincides 
with a singular point. In this case the order of its multiplicity is 2X%. 

?20. We have shown that in every instance the distribution of the roots 
among the segments is determined by the form of the polygon. To ascertain 
the changes in their distribution which result from a variation of the parameter, 
we have need therefore only to determine the changes in the shape of the poly- 
gon, and since a change can occur only when the two solutions become identical, 
it will suffice to follow the successive transitions through a rectilinear form. 
This will presently be done in detail for the case in which there are only four 
singular points. 

?21. Before doing so, however, it is necessary to say a few words concern- 
ing the methods by which the polygons are constructed. The term polygon is to 
be understood in the broad sense in which it is employed in the Theory of Func- 
tions. As has been already said, the polygon may include either in its interior 
or on its boundary the point oo. It will be necessary, therefore, in our diagrams 
to indicate upon which side of its boundary the polygon lies. This will be done 
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by shading the diagrams. The polygon may also contain overlapping portions 
or leaves somewhat after the manner of a Riemann's surface. To facilitate the 
construction of the more complex polygons of this character, we shall have 
recourse to Klein's processes of attachment of circles or planes to polygons of 
simnpler type. A polygon is said to be "reduced" when it cannot be constructed 
by such attachment from any simpler polygon. The different modes of attach- 
ment may be most easily illustrated by reference to Fig. 4, which represents the 

simplest type of a reduced polygon of four sides. To increase A by 27t a circle 
is taken with the same radius as one of the opposite sides, say CD, and is placed 
above (or beneath) the polygon so that its boundary shall fall upon this side. 
The circle and polygon are then cut along a common line from A to CD, and the 
two are united across the cut like the two leaves of a Riemann's surface, the por- 
tion of either of which lies on one side of the cut being connected with the oppo- 
site portion of the other. In the resulting polygon the side CD must overlap 
itself. This process is known as the polar attachment of a circle, and may be 
repeated any number of times. If the same process be applied to increase the 
angle C, which, with the surface of the polygon, lies upon the convex side of 
AB, the portion of a plane exterior to a circle having the same radius as AB is 
to be employed. To cover such cases, the term circle, as in the Theory of Func- 
tions, will here be used to denote alike the portion of a plane within or without 
the bounding circumference. To increase two angles each by 2it, the process of 
diagonal attachment may be used. An entire plane is placed upon the polygon, 

20 

(Is 4 

T- 4 
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A the two are then cut along a common line between the 
vertices of the two angles (Fig. 5), anld finally are con- 

ct_ / ;)d<, nected in the manner before described. A third process, 
known as lateral attachment, increases each of two adja- 
cent angles by 7t. Along the intervening side a circle is 

FIG S placed which has the same radius and which continues 
the surface of the polygon across this side. The connecting side is then erased 
so that the two figures form a continuous surface. Fig. 6 gives the result of such 

attachments on the sides CD and BC of Fig. 4. Two successive attachments on 
the same side are together equivalent to a single diagonal attachment of an entire 
plane between the two extremities of the side. It is to be observed that this 
attachment is not applicable to a side which overlaps itself. A fourth process, 
known as transversal attachment, adds to the polygon a circular ring, and is suffi- 
ciently explained by Fig. 7. The attachment can only be made to two sides, 

A 

-V 

-A A 

F- c. 6 

.8v A X 
c 

c~~~,; 
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which are arcs of non-intersecting circles, and leaves the angles of the polygon 
unaltered. The various attachments which have been described are not always 
possible, nor, when separately possible, are they always compatible one with 
another, but a glance at the polygon is usually sufficient to determine what system 
of attachments is applicable. It is therefore unnecessary to discuss the limita- 
tions upon their use further than to say that no cut can cross itself or any other 
cut. Whenever we have occasion to employ these attachments, they will be 
indicated merely by drawing the cuts and placing beside each cut a number to 
show how many attachments are to be made upon it. In the case of lateral 
attachment on any side, the number will be placed adjacent to the side. 

?22. We may now return from our digression and take up the case of four 
singular points. The exponents in this case are 

-ff + MIl 
g +qn M2-f + M3 2, 

V~m O +m O +m2 

0 0 n 

and the differential equation takes the form 

d.gy 
+ t 71 - 

, 3 dy 
dx2 \ x-el x -e2 x -e3 / dx 

4 (x -e)(x7-e e))Yx [1 7] 

If m4 is used to designate the integral component of 
X. 

= n2 + n , it is easy to 

prove that the sum of the four m is equal to the degree n of the polynomial. 

The polygon corresponding to this equation, whether it consist of one or 
many leaves, is in general a curvilinear quadrilateral bounded by two arcs of 
concentric circles and by two straight lines which cut the circles at right angles. 
By geometrical considerations, which will here be only briefly outlined, it can be 
shown that there are eleven types of reduced polygons of this character and no 
more. These are shown in Plate I. The apparent form of some of these types 

1 
can be altered by the substitution ~ ,which exchanges y, and y2, but for 
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our purpose the original and the transformed polygon are obviously equivalent. 
In the case of types 2, 4 and 6, both forms of the polygon are presented. 

The construction of these eleven types is based upon 
Fig. 8, which consists simply of two concentric circles 

2? S cut by two straight lines through their common center. 
The vertices of the polygon must be selected, one from 

/, \ each of the four pairs of intersections A1, A2; BE, B2; 
C1, C2; D1, D2. We will first suppose that no side of 
the reduced polygon overlaps itself. If neither of the 
rectilinear sides passes through 0 or oo, the one must 
be either B1C1 or B2C2 and the other D,A1 or D2A2. 

2/ ~ The boundary of the polygon has therefore the form 

FI. 8 represented in type 1. To show that the polygon itself 
must lie with reference to the boundary as represented 

in our diagram, it suffices to observe that if it were on the other side of the 
boundary it would contain the whole of the circle of which AB is an arc, and 
would therefore be reducible by a lateral detachment of this circle. These con- 
siderations, however, as yet only determine the angles to within multiples of 2X. 
But any other polygon, bounded in the same manner as the first polygon of the 
plate, would contain at least two angles which would exceed the corresponding 
angles of the latter by multiples of 27, and would therefore permit of the diago- 
nal detachment of one or more planes. Type 1 therefore represents the only 
type of reduced polygon which has no side which overlaps itself or passes through 
0 or o. In the discussion of subsequent types similar reasoning will show, after 
the boundary of the polygon has been determined and also the side of the boun- 
dary upon which the polygon lies, that there is only one reduced polygon which 
meets the requirements. This will hereafter be assumed without further remark. 

We proceed next to determine the reduced polygons which have but a 
single side which passes through either the origin or infinity. It is immaterial 
through which point the side is assumed to pass, since the points may be 

exchanged by the substitution v7 -. This side may therefore be taken as 

D,Oo A2 or D,x Al, and we may also suppose that the adjacent surface of the 
polygon is the border shaded in Fig. 8. The second rectilinear side must be 
either BIC, or B2 C2. If. now, the first side terminates in A2, this vertex must 
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be connected with B1 and B2 respectively by the arcs A2B1 and A2B1B2, because 
otherwise the polygon would contain the whole of the circle lying within the 
circuinference A2B2B1 and would consequently be reducible. Completing, finally, 
the polygon by the addition of a fourth side, we obtain types 2, 3 and 4. The 
polygon in which the fourth side is the arc C2C1D1 is excluded, because it would 
necessitate a winding point at D1 and would therefore be reducible by lateral 
detachment along this side. If, on the other hand, the first rectilinear side termi- 
nates in A1, the second cannot be B2 C2. For if it were, the whole of the half- 
plane adjacent to the former side would be contained in the polygon and could 
be detached laterally. We have therefore only to connect D1 ooAl with B10I, 
and this can be done in two ways, as shown in types 5 and 6. 

If both the rectilinear sides of the polygon pass through the origin or 
infinity, we may distinguish the following cases: 

(1). One rectilinear side D1 oA2 passes through X and the other, B,B2C2 or 
B2B,C1, through the origin (Types 7 (a) and 7 (b)). 

(2). Both sides pass through the origin or through o, say the origin. We 
have then to connect two such segments as D1AIA2 and BIB2C2 (Type 8). 

(3). One side D1 ooA, passes through the origin and infinity, and the other 
only through the origin. The segment B1B2C2 must be selected as the second 
side, since otherwise the polygon could be reduced by the lateral detachment of 
the half-plane adjacent to the former side (Type 9). 

(4). Each side passes through the origin and infinity. With DI ioAl must 
be associated the segment B1 X C2, since otherwise a half-plane could be removed 

(Type 10). 

It remains now to consider the possible forms of a reduced polygon, one or 
more of whose sides overlap. Examples of such polygons can be obtained from 
two of the preceding types, namely, Types 4 and 7(b) by prolonging the opposite 
arcs each by a semi-circumference. We shall, however, still consider the polygons 
to be of the same type. The only other types in which the arcs can be produced 
till they overlap are the lst and 3d, but these polygons will then be reducible 
either by transversal or by polar detachment. There are therefore no other 
reduced polygons in which the sides overlap because the polygon winds in ring- 
form between the concentric arcs. We have therefore only to consider the cases 
in which the overlapping is effected in somie other way. Since the surface over- 
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laps at the same time as the side, it must wind around one or both of the vertices 
opposite to the side. If the side be rectilinear, it is easy to see (compare Fig. 9) 

that the surface makes a complete winding around one of the two vertices. The 
polygon can therefore be reduced by polar detachment. The same is true if a 
complete winding takes place around a vertex opposite to a circular side. There 
remains therefore only the case where there is a partial winding around both 
vertices, so that the angles here are 37t. The only reduced polygon of this 
character which can be constructed is presented in Type 11. Our list of reduced 
polygons is therefore now complete. 

Each reduced polygon gives rise by attachment to a system of polygons. 
Many of the polygons thus constructed can, however, be constructed from two or 
more distinct types. We will, for example, obtain the same form of polygon by 
a lateral attachment on BC in Type 3 as by a diagonal attachment between B 
and D in Type 4; or again, by a lateral attachment on DC in Type 8 as by a 
lateral attachment on B C in Type 7 (a). 

? 23. We are now prepared to construct for any given values of the m a 
polygon which corresponds to the differential equation [17], and to trace the suc- 
cessive changes in form, when the parameter h of the equation is continuously 
varied. A complete determination of the polygon depends, of course, upon the 
anharmonic ratio of the singular points as well as upon the accessory parameter. 
A two-fold variation in the form of the polygon is accordingly possible. Either 
the ratio of the radii of the two concentric arcs or the inclination of the two 
rectilinear sides may be continuously altered. We shall, however, take account 
only of such changes of form as affect the type of the reduced polygon and the 
corresponding system of attachments. With this understanding it will be first 
found that by continuous geometrical deformation a series of different forms is 
obtained, which succeed one another in definite order, and subsequently it will be 

Ft/ a. //I//A 

Ftca. 9 
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shown that a variation of the parameter h alone gives rise to the series thus 
obtained. We may start with any polygon having the angles (mi + 1)7t, for 
from it all other forms of polygons with the same angles will be subsequently 
obtained. We will first consider the case in which some one of the m, say i4, 

is equal to or greater than the sum of all the others. 

I. m4>ml+ m2l + M3 

To bring the m to a form corresponding to the system of attachments to be 
employed in the construction of the polygon, we shall avail ourselves of one of 
the four following arithmetical reductions, in which s, t, x and z denote integers, 
positive or zero. 

(1) m4 2s + 2t + x + z (2) m4 = 2s + 2t + x + z + 1 
mlx l = x 

m2 2t mn2 -2t+ 1 
m3 Z. m3 = Z. 

(3) m4=2s + 2t + x + z + 1 (4) m4=2s + 2t + x + z + 2 
M= xml = x 

m2= 2t m2 = 2t + 1 

=3 Z. m3 = Z. 

The first two reductions are to be employed when the polynomial is of even 
degree; the last two, when the polynomial is of odd degree. In all four cases 
the form of the reduction shows that after the selection of a suitable reduced 
polygon, a system of attachments may be employed consisting of t diagonal 
attachments between E2 and E4, x and z lateral attachments on the sides E4E1 
and E4E3 respectively, and s polar attachments from E4 to one of the two oppo- 
site sides, say E213. In the first case we must select the first type of reduced 
polygon, in the remaining three cases types 7, 4 and 3 respectively, A, B, C 
and D being taken in each case as the vertices Eoc,, E1, E2, E3. 

All possible changes in the form of the polygon for case 1 are shown in 
Plates II and III. As before pointed out, the essential features of the polygon are 
modified only by transition through a rectilinear form. It suffices therefore to 
indicate in our figures these successive transitions. The rectilinear forms are 
marked in the plates with even numbers, the intermediate stages with odd 
numbers. The passage to a rectilinear form is effected, of course, by withdraw- 
ing the center of the concentric arcs to o. With the exceptions to be hereafter 
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noted, the successive transitions can be effected only in the order in which they 
are given in the plates. 

The two plates, taken together, are divided into four sections, each of 
which illustrates a cycle of chaniges which is to be repeated as many times as 
possible. In the first cycle a polar attachment is transferred from E2E3 to E2E1, 
as is seen by a comparison of the first and last figures of the cycle. The lateral 
and diagonal attachments remain, however, unaltered. The corresponding index 
numbers have been inserted only in the first and last polygons, it being under- 
stood that in each intermediate polygon there is an equal niumber of lateral, as of 
polar, attachments. The second figure may be obtained from the first by with- 
drawing the center of the circular sides to o. The only new form which is pos- 
sible when it reappears in the finite plane is that represented in Fig. 3 (a) 
or a similar figure in which E1E2 is the inner and Ec,,E3 the outer arc. These 

two figures are, however, equivalent by virtue of the substitution r = 1 . Figure 

3 (b) is of the same form as 3 (a), one of the s polar attachments being explicitly 
represented. If, now, in this figure the center of the concentric arcs is carried 
to the right along the side E2E3 to o-if carried in the opposite direction, we 
return to Fig. 2-the vertices E3 and E2 both pass to o, but E1 must remain in 
the finite plane, since otherwise the polygon would degenerate into a triangle. 
We thus arrive at Fig. 4. The passage thence to Fig. 6 requires no comment. 
The seventh and eighth polygons have been omitted, inasmuch as they can 
readily be supplied by the reader, being similar in structure to the fifth and 
fourth polygons respectively, but with an interchange in the roles of E1 and E3. 
Omissions of like character will likewise be made in subsequent cycles. This 
cycle is to be repeated s times, that is, until all the polar attachments have been 
transferred to E1E2. It may then be applied once more, until the reduced poly- 
gon 3 (a) is reached, when it will be found impossible to proceed further. The 
polygon thus obtained is the initial figure of the second section. 

The second cycle removes a diagonal attachment and replaces it by a pair 
of polar attachments to E1E2. At the same time the numlber of lateral attach- 
ments on Ex,E3 is diminished and the numnber on E3E2 inicreased, each by two. 
The successive changes require no particular comment, until we reach the two 
polygons 5. These (as later other pairs of polygons) are numbered alike to call 
attention to the fact that, although constructed from two different types of 
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reduced polygon, they are identical in forin. On leaving this figure, two alter- 
native courses are open, either to proceed as in the plate to the ninth polygon or 
to pass from the one to the other by means of 5 (b) and 5 (c) (see adjoining Fig. 10) 

without the insertion of any rectilinear form. Either succession of changes is geo- 
metrically possible, and a decision between them cannot here be made. Pre- 
sumably it is dependent upon the position of the singular points upon the axis. 
The cycle can be repeated until either all the diagonal attachments or all the 
lateral attachments on EooE3 have been removed. The former is the case when 

Z >t, that is, m3 > m2; the latter, when m3?m2. 

The third cycle is applicable only when m3 >mn2, and the effect of its 
repeated application is to remove the remaining lateral attachments. The 
changes for the first half of the cycle are the same as in Figs. I to 5 of cycle 2. 

We then insert two new figures, numbered 5 (a) and 5 (b), and thence proceed 
as in polygons 10 to 13 of cycle 2 to the ninth and final figure of the cycle. 
Each half cycle removes a lateral attachment on EooE3 and replaces it, the one 
by a polar attachment from E00 to E1E2, the other by a polar attachment frora 
E3 to the same side. According as the number of lateral attachments to be 
removed is odd or even, the reduced polygoni with which we conclude -the last 
application of this cycle will have the form given in 5 or in 9. Each of these 
polygons contains part of a circular ring included between the sides E.oE3 

21 
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and E1E2. Since all the lateral attachments have been removed from these 
sides, they can be indefinitely prolonged, thus adding an indefinite number of 
circular ritngs to the figure. This, as will be later shown analytically, is always 
the final outcome of an indefinite increase of the parameter. 

When m3,? i2, the prolongation of the two circular sides begins immedi- 
ately upon conclusion of the second cycle, the reduced polygon being then either 
5 or 13 of cycle 2. Owing, however, to the presence of diagonal attachments 
between Eo and E2, this will not result at once in the addition of circular rings 
to the polygon. The last section of Plate III shows the effect of a prolongation 
of each of the circular sides for a complete circumference, a diagonal attachment 
being of necessity replaced by two polar attachments, the one from Eo, to the 
side E1E2, the other from E1 to the side E,E3. By a repetition of this process 
the diagonal attachments will be removed, but at any time before this has been 
accomplished another change in the form of the polygon may be made. By 
passage through a rectilinear form, the circular sides to which the polar attach- 
ments are made may be converted into the rectilinear sides. But if this is done, 
to continlue the transformation of the polygon, it will be necessary to re-exchange 
the circular and rectilinear sides either by retracing our steps or by completing 
the series of changes as indicated in Fig. 11* of the text. The final outcome 
will be the same whether these changes be included or not. The diagonal 
attachments will eventually be all replaced by polar attachments, and the further 
prolongation of the circular sides EcoE3 and E1E2 will thereafter result in the 
addition of circular rings ad infinitum. 

We have now traced all possible changes in the form of the polygon upon 
the hypothesis that the parameter is varied continuously in one direction. It 
remains to consider what changes the polygon will undergo when the parameter 
is varied in the opposite direction. As already stated, the only difference be- 
tween the first polygon of cycle 2 and the first of cycle 1 is that the polar attach- 
ments are all made to E1E2 in the one case and to E2E3 in the other. By a 
change of subscripts, the subsequent cycles will therefore apply equally 
well to either side of the first cycle. A variation of the parameter in the 
opposite direction will also ultimately result in the addition of circular rings, 
which, however, will be included between the sides EoE1 and E2E3. 

* The transition from 3 (a) to 3 (b) is effected by increasing in the former polygon the radius of the 

inner arc E3E2 until it exceeds the radius of EooEl. The two rectilinear sides then overlap, as in polar 

attachment. 
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This completes the discussion for case 1. The second case differs from the 
first in no essential feature. Plate IV gives the first cycle of changes. By its 
repeated application the polar attachments, as before, are transferred from E2E3 
to EE2. In the last application of the cycle it will be found that the seventh 
polygon is identical in structure with the fifth of cycle 2, case 1, except that 
there is no lateral attachment upon E2E3. From this point on, the discussion is 
the same as in case 1. In the subsequent figures there will be an even or an odd 
number of attachments on this side according as the number of such attachments 
was in the former case odd or even. 

The changes for case 3 are shown in Plates V and VI and for case 4 in Plate 
VII. The successive cycles are in every way similar to those of the first two cases, 
and case 4* is related to case 3 precisely as case 2 to case 1. 

? 24. When no one of the m is greater than the sum of the remaining three, 
we may, without loss of generality, assume that 

II. M4+m2>M3+m1, m4+ mlm2+m3. 

One of the four following arithmetical reductions may then be made, t, z and x 
being non-negative integers and y a positive integer. 

(5). m4=2t+z+x (6). m4= 2t+z+x 1 
ml= 4 + y m1=+ xHy 

m2= 2= +y m2= 2=t+y+ 1 
m3= Z. m3= Z. 

(7). m4= 2t + z + x + 1 (8). m4= 2t + z + x + 2 
m1=X+y Ml =x + y 

m2n2t+y m2=2t+y+ 1 

m z =zM =z. 

In the first two of these four cases the polynomial is of even degree; in the last 
two, of odd degree. The same reduced polygons may be selected as in the cor- 
responding cases of I, namely, the first, seventh, fourth and third types, 
B, C, D and A being taken as before for the vertices E1, E2, E3 and Eoo. The 

*The seventh polygon of cycle 1 of this case, after the polar attachments have all been transferred 
to E1E2, is converted into one similar to 5 (b) or 9 of cycle 2, case 3, by enlarging the radius of the inner 
arc until it exceeds that of the other arc. 
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polygons are then completed by t diagonal attachments between Ec, and E2 and 
by x, y and z lateral attachments along the sides E<oE1, E1E2 and Eo E3 The 

polygon for case 8 can also be built up from Type 4, since the first lateral attach- 
ment on BC in Type 3 is equivalent to a diagonal attachment between B and D 

in Type 4, and the polygon will therefore differ essentially from that for case 7 
only in the selection of the vertices Ei. 

The first cycle of changes for cases 5-7 is shown in Plate VIII. The changes 
in case 8 are similar to those in case 7. With each repetition of the cycle the 
number of lateral attachments on each of two opposite sides, E1E2 and E3E, is 
diminished by a unit, while the number on each of the other sides is increased a 
like amount. The cycle is to be repeated until all the lateral attachments have 
been removed from one of the first two sides. This side is then free for polar 
attachment, as was also E2E3 at the outset. The cycle is therefore to be both 
preceded and followed by other cycles in exactly the same manner as was cycle 1 
in the corresponding cases of I. We may therefore limit our attention altogether 
to the present cycle of changes in the polygon, this being the only one of a new 
character. 

?25. We have now seen for each case all possible changes in the form of the 
polygon. It remains to prove that when the parameter is continuously varied, 
the polygon will pass through the series of changes which have been described. 
For this it will evidently suffice to show that an indefinite increase or decrease of 
the parameter will result in the addition of an indefinite number of circular 
rings included in the one case between E3E0o and 11E2, in the other, between 
EcoEi and E2E3. To demonstrate this we first reduce equation [17] by the sub- 
stitution 

y = (x - )i ... . (x - y 
to the form 

d2 (X ( ) +4(xe)(X-e2) (x-e))=3 [18] 

in which R (x) is a rational fraction that is finite except at the singular points. 
If h is then taken sufficiently large, the coefficient of y will have for any given 

value of x the same sign as (xe)( - )( - e). For large positive values 

of h the sign will therefore be positive in the segments e1e2 and e3. , for large 
negative values in the segments coe1 and ese3. The coefficient can, moreover, be 
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made greater than any given positive constant a. Now it is well known that 
every real solution of the equation y" + ay = 0 has an infinite nunmber of real 
roots which cumulate in both directions in the vicinity of the point at w. But, 
by a theorem of Sturm,* if G' and G" are two functions of x which are finite and 
continuous for any interval of the axis of x, and if G' is algebraically less than 
G", then between any two successive roots of a real solution of y"' + Gfy = 0, 
which are situated in this interval, there must lie at least one root of every real 
solution of y" + G"y = 0. It follows that when h is indefinitely increased, any 
real solution of [17] will have an infinite number of roots in the segment e3 , and 
when h is indefinitely decreased, an infinite number of roots in the segment oel,. 
Like results must also hold for the segments e1e2 and e2e3, respectively, since by a 
linear substitution the singular points e2 and X can be interchanged and at the 
same time the value- of h is multiplied by a negative constant.t Thus, whether 
h is indefinitely increased or diminished, every real solution will have an indefi- 
nitely large number of roots in alternate segments of the axis. Furthermore 
these segments cannot be hyperbolic segments, because in such segments the 
two factors of our polynomial product are real solutions and its degree would 
then be infinite. In the elliptic segments the two solutions will have the form 
AP ? V-1 BPm' +, in which P? and Pmi will each have an infinite number 
of zeros, the zeros of P1 alternating with those of PflZ?+. Hence as x traverses 

either elliptic segment, the argument of v', which is equal to 2 tan-' BPm' A B 
AP? A' 

will increase without limit. It follows that when h approaches 0, an indefinite 
number of complete circumferences will eventually be added to the circular 
sides of the polygon. Since the angles of the polygon remain unaltered, this 
can be done only by the successive addition of circular rings. 

?26. Our figures may now be applied to a study of the polynomial product. 
First consider cases 1 and 2 in which the product is of even degree. Upon 
examination of the rectilinear polygons it will be found either that the vertices 
all lie in the finite plane or that two of the vertices El, E2, E3 are situated 
at o. For the critical values of the parameter the square root of the polyno- 

* Lionville, tome I, p. 135. 
f See my article in the Bulletin of the American Mathematical Society, June, 1898, p. 432. 
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mial product can therefore be expressed in one of the four following forms: 

(1). P n 
2 7 

(2). (X - e2)m2?+ (x e3) 3P m 

( % )* (a el ) (2; 3)~ P n _ m2_ m3-17 

(4). (x el)'4 (x - 
e,) P n_-, 

The polynonials P thus introduced fall into four distinct classes, and those 
which belong to the same class are solutions of differential equations with com- 
mon exponent-differences. According to Heine's formula [8] the number of 
polynaomials in the several classes must be equal to 

(4). n2 + 1, (2). (3) M3 (4). -m m 2 ~~2 -m-2,() - 

and the total number will be 

2n + 1- 2 [m, + m2 + m3] = 4s + 4t + 2z + 2z + { 3 case 1 
37case 

1; 

The number of rectilinear polygons will not, however, necessarily be so great, 
inasmuch as they correspond only to real values of the accessory parameter, that 
is, to polvnomials with real coefficients. The lower limit to the number of such 
polygons can be obtained by a count of the minimum number of rectilinear poly- 
gons included between the two polygons witlh series of ring attachments, and it 

will be found to be 4s + 2x + 2z 1, case Our geometrical investigation 

furnishes, therefore, for the cases under consideration, a supplement to Heine's 
theorem. The missing polynomials belong to the first and third classes. 

An inspection of the plates also shows that the polynomials of the several classes 
recur in each cycle in a definite order. The first cycle is, however, the only one in 
which all four classes are included. The order in which they there recur is for 
case 1 the same as that in which they were above enumerated; in case 2 they 
recur in opposite order. 

As before explained, the changes in the distribution of the real roots of the 
polynomial product which result from a continuous change of the paramieter h 
can easily be traced by comparing successively each rectilinear polygon with the 
polygons which immediately precede and follow it. In the two cases before us, 
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as also in all cases to be hereafter examined, each passage of the polygon through 
a rectilinear form exchanges the rectilinear with tne circular sides. As therefore 
the accessory _parameter -passes successively through the critical values, each seegment 
of the axis will be alternately elliptic and hyperbolic. 

The successive changes in the position of the roots may be advantageously 
shown by a graphical representation such as was introduced by Klein in his dis- 
cussion of Hermite's equation. For this purpose the values of h are plotted as 
ordinates and the roots of the corresponding polynomials as abscissas. The 
resulting curve F(Pn, h) = 0 shows at a glance the dependenc'e of the roots upon 
the parameter h. Specimen sections of the curve, which correspond to the first 
applications of the various cycles, are given in the first half of Plate IX for 
case 1. Horizontal lines which represent the critical values of the parameter are 
added and numbered to correspond with the rectilinear polygons in Plates II 
and III. These, together with the vertical lines x = el, e2, e3, divide the plane 
into rectangles, in which alternately the two solutions are elliptic and hyperbolic 
To each successive repetition of cycle 1 corresponds a branch of the curve simi- 
lar to that drawn in the plate, but the number of oscillations between e2 and e3 

which corresponds to the number of polar attachments on the rectilinear side 
E2 E3 is every time diminished by a unit, and the number of oscillations between 
e1 and e2 is increased by a unit. In like manner the number of oscillations 
between el and e2 is increased by two units with each successive repetition of cycle 
2 or 3. The dotted portions of the curve correspond to the series of polygons in 
cycles 2 and 4 whose presence cannot definitely be affirmed. The ovals are to 
be included in the curve only when the numbers which they enclose are odd. 
Below the first section of the plate are to be added sections similar in structure 
to those above it, but the roles of the segments el e2 and e2 e3 must be inter- 
changed. The first section of the curve for case 2 is indicated at the foot of 
Plate IV. The second and third sections are similar to the corresponding sec- 
tions of case 1 but with the insertion of an oval in the lowest rectangular space 
between x = e2 and x= e3. 

The curve given by Klein for Hermite's equation is comprised under case 1, 
when the degree of the polynomial-product is even, and is the special case in 
which there is but a single cycle of changes. The curve therefore consists 
entirely of sections similar to that given for the first cycle, but without the ovals. 
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?27. Cases 3 and 4. 

The theory of these two cases, for which the polynomial-product is of odd 
degree, runs parallel to that of the first two cases and may therefore be very 
briefly indicated. In each rectilinear polygon either all three of the vertices 
E1, E2, E3 lie at X or only one. For the critical values of the parameter the 
square root of the polynomial has accordingly one of the four following forms: 

(1) (-e3)m3+ Pn-I 

(2). (x- e2)2+ Pn-1 
M2 

(3). (x el)ni?+ P.- 

(4). (x- el)n1?+(x - e2) 2?-(X-e3)n+Pn 3 
~2 -in1 M_M 

We have again four classes of the polynomials, and by [8] the total number in 
each class is as follows: 

n + 1 - n + 1 m (1). -r.3, (2). -i, 
2 2 

n + n-1 M 3 (3). -n1M, (4). -m1-m2-m3; 
2 2 

(3, case 3 in all, 2n +1-2 [ml +m2 + m3ii= 4s+ 4t +2x + 2+ 13 Cas .A count 

of the total number of polygons will show that at least 4,+ 2x+2z + 3, case 3 
+ +1, case 4 

are real. The missing polynomials belong to the first and third classes. In each 
cycle there is again a definite order in which the classes recur, the order in 
which they were just enumerated being that for the first cycle of case 3. Speci- 
men sections of the curve F(Pn, h) = 0 -are drawn for case 3 in the second half 
of Plate IX and for the first cycle of case 4 at the foot of Plate VII. The curves 
differ mainly from those of the first two cases in that the principal branches for 
the separate cycles are no longer closed curves, but form one continuous curve 
which traverses the entire plane. The curve given by Klein for Hermite's equa- 
tion, when the degree of the polynomial-product is odd, is included under case 3 
and consists entirely of sections simsilar to the first of the plate, but with the 
omission of the ovals. 

22 
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166 VAN VLECK: On Certain Differential Equations of the 

?28. IL. Cases 5-8. 

An inspection of Plate VIII shows that the nature of the cycle there repre- 
sented varies greatly in the several cases. In the fifth case the vertices of the 
polygon remain throughout the entire cycle in the finite plane. There is there- 
fore but a single class of rectilinear polygons, and all the corresponding polyno- 
mials have the form Pn. The cycles which precede and follow that given in 

2 

the plate introduce three other classes of polynomials. If z > y, that is, if 
M4 + rn3 > qn2 + Ml, we have the same four classes of polynomials as in cases 1 
and 2, and their total number 

2n - 2 [ml + min + m3] + 1 is equal to 4t + 2z + 2x + 1. 

Of these all except possibly 4t mnust be real. The missing polynomials belong 
to the first and third classes. If, on the other hand, z < y, the fourth class of 
polynomials must be replaced by one for which the square root of the polyno- 
mial product has the form (x - e3)m3+P,, _ . - . The reduction of the degree 

of this expression below n2 is due to the coincidence of 2 (m4 + i) roots of the 
2 

polynomial-product with the singular point o. Such a reduction can take place 

only if n-M4-1, which is the negative of n2 or the second exponent 
2 

for c , is positive, and the necessary condition for this is easily seen to be the 
condition which is common to cases 5-8, viz. n4< Ml + M.2 + m3. The total 
number of polynomials in the four classes is 

2n-3m3- m,l-- m2-m4 + 1= 4t+ 2x + 2y + 1. 

Of these all except 4t must certainly be real. All the unreal polynoinials belong 
again to the first and third classes. 

Case 6. Two alternatives are apparently possible in the first cycle, between 
which we cannot here decide. The cycle may, namely, be concluded, as in the 
plate, without the insertion of any rectilinear polygon whatever, or at its close a 
series of changes similar to the series given in figures 5b to 9 of cycle 2, case 1, 
may be added. The case differs essentially from the preceding in this, and only 
in this, cycle. 

Cases 7-8. In the first cycle each vertex of the polygon in turn recedes 
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Second Order Allied to Hermite's Equation. 167 

to o. Accordingly, for critical values of the parameter, the square root of the 
polynomial-product will have the form: 

(1l) . (x-e)m + s_ (2). vx (-e2) M2- 

T__ ~~~~~~~~~~~~~~~~2 
(3). (x el)n 

+,L Pn-1 n, (4). Pn - 1 =nm 
2 m 2 4= 2 

Four classes of polynomials are thereby distinguished, and their total number is 

2n- [ml + M2 + 3 + M41 + 2 = 4t + 2z + 2y + 2z + f3, case 7, Lml + l?2 +m3 -~-m4j ~ - ~ X-~ Y ~ F case 8. 

Of these only {4t , case 7, belonging to the 1st and 3d classes can be 
*4(t + 1), case 8, 

imaginary. 

It is noteworthy that in all 8 cases, with the single exception of case 6, the 
maximum number of imaginary polynomials is either 4t or 4 (t + 1), depending 
solely upon the number of diagonal attachments in the initial polygon. 

WESLEYAN UNIVERSITY, Aug. 1898. 
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