Wandering domains of entire functions

A. Eremenko

April 4, 2015

Let f be an entire function, which is not of the form $a z+b$. Denote by f^{n} the n-th iterate of f, that is $f^{n}=f \circ \ldots \circ f n$ times. Let F be the maximal open set in the complex plane, where the iterates $\left\{f^{n}: n=0,1,2 \ldots,\right\}$ of f form a normal family.

Suppose that D is a component of F. Consider the set L of all limit functions of the family $\left\{f^{n}\right\}$, and suppose that all these limit functions are constant. There are examples where L is infinite.

Question. Can L be infinite and bounded?
Here is a restatement of the question in modern terminology. A component D of the set F is called wandering if $f^{n}(D) \cap f^{m}(D)=\emptyset$, for all integers $n>m \geq 0$. It is known that all limit functions of the family $\left\{f^{n}\right\}$ in a wandering component D are constant. Furthermore, if the set L of limit functions in a component D of F consists only of constants, and L is infinite, then D is a wandering domain. The question is whether a subdomain $D_{1} \subset D$ of a wandering domain can wander on a bounded subset of the plane.
A. Eremenko and M. Lyubich, Examples of entire functions with pathological dynamics, J. London Math. Soc., (2) 36 (1987), 458-468.

