Holomorphic curves with few inflection points

A. Eremenko

April 4, 2015

Consider a vector of linearly independent entire functions $f=\left(f_{0}, \ldots, f_{n}\right)$, whose coordinates have no common zeros. The characteristic is defined by

$$
T(r)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \log \left\|f\left(r e^{i \theta}\right)\right\| d \theta-\log \|f(0)\|
$$

and the lower order is

$$
\begin{equation*}
\lambda=\liminf _{r \rightarrow \infty} \frac{\log T(r, f)}{\log r} \tag{1}
\end{equation*}
$$

We also define

$$
N_{1}(r)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \log \left|W\left(r e^{i \theta}\right)\right| d \theta,
$$

where $W=W\left(f_{0}, \ldots, f_{n}\right)$ is the Wronskian determinant. N_{1} is called the 'ramification term' in the Second Main Theorem of Cartan. Actually this is the averaged counting function of inflection points of the holomorphic curve $\left(f_{0}, \ldots, f_{n}\right)$ in projective space.

Conjecture. Suppose that $\lambda<\infty$ and $N_{1}(r)=o(T(r))$. Then λ is rational and the limit in (1) exists.

This is known to be the case when $n=1$ [1].
Here is the motivation for the conjecture (the argument is due to V. P. Petrenko). Suppose that $\lambda<\infty$, and $N_{1}(r) \equiv 0$. This means that the Wronskian has no zeros, so f_{0}, \ldots, f_{n} make a fundamental system of solutions to a differential equation

$$
w^{(n+1)}+P_{1} w^{(n)}+\ldots+P_{0} w=0
$$

where P_{j} are entire functions. By a theorem of M . Frei [2], our condition that $\lambda<\infty$ implies that P_{j} are polynomials. In this case, the conclusion of the conjecture is well known.

References

[1] A. Eremenko, Meromorphic functions with small ramification, Indiana Univ. Math. J., 42 (1993), 1193-1218.
[2] M. Frei, Sur l'ordre des solutions entières d'une équation diffèrentielle linéaire, C. r., 236 (1953), 38-40.

