1.1 Exact equations. Every first-order differential equation

$$
y^{\prime}=f(x, y)
$$

can be rewritten in a symmetric form

$$
\begin{equation*}
M(x, y) d x+N(x, y) d y=0 \tag{1}
\end{equation*}
$$

The equation (1) is called exact if

$$
\begin{equation*}
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x} \tag{2}
\end{equation*}
$$

If this condition is satisfied, one can find a function $F(x, y)$ such that

$$
\begin{equation*}
d F(x, y)=M(x, y) d x+N(x, y) d y \tag{3}
\end{equation*}
$$

which means that the family of implicitly defined functions

$$
\begin{equation*}
F(x, y)=c \tag{4}
\end{equation*}
$$

is a general solution of (1).

1.2 An example of exact equation is

$$
e^{y} d x+\left(x e^{y}+2 y\right) d y=0, \quad \text { whose general solution is } \quad x e^{y}+y^{2}=c
$$

Every separable equation can be written in a symmetric form

$$
f(x) d x+g(y) d y=0
$$

which is also exact.
1.3 How to solve exact equations. (3) is the same as

$$
\begin{equation*}
\frac{\partial F}{\partial x}=M \quad \text { and } \quad \frac{\partial F}{\partial y}=N \tag{5}
\end{equation*}
$$

Thus to find F we have to solve (5). Integrating the first equation in (5) with respect to x we obtain

$$
\begin{equation*}
F(x, y)=\int M(x, y) d x+g(y) \tag{6}
\end{equation*}
$$

where g is still unknown. To find g we differentiate (6) with respect to y and plug to the second equation in (5). We obtain:

$$
\frac{\partial}{\partial y} \int M(x, y) d x+g^{\prime}(y)=N(x, y)
$$

which implies

$$
\begin{equation*}
g(y)=\int\left\{N(x, y)-\frac{\partial}{\partial y} \int M(x, y) d x\right\} d y \tag{7}
\end{equation*}
$$

It remains to plug this expression to (6).
1.4 For example, to solve $e^{y} d x+\left(x e^{y}+2 y\right) d y=0$ (which is exact), we write

$$
\frac{\partial F}{\partial x}=e^{y} \quad \text { and } \quad \frac{\partial F}{\partial y}=x e^{y}+2 y
$$

Integrating the first equation with respect to x gives

$$
F=\int e^{y} d x+g(y)=x e^{y}+g(y)
$$

so

$$
\frac{\partial F}{\partial y}=x e^{y}+g^{\prime}(y)
$$

Substituting this to the second equation, we obtain $g^{\prime}(y)=2 y$, so $g(y)=$ $y^{2}+$ const, and $F=x e^{y}+y^{2}+$ const. Thus the general solution is given by

$$
x e^{y}+y^{2}=c .
$$

