Math 545
Homework no. 3

<table>
<thead>
<tr>
<th>Problem</th>
<th>Score</th>
<th>Max. pts.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Problem 1. Let \(f \in L^p(\mathbb{R}^n) \), \(1 \leq p \leq \infty \), \(g \in L^1(\mathbb{R}^n) \). Prove that \(f \ast g \in L^p(\mathbb{R}^n) \), and that moreover
\[
\|f \ast g\|_{L^p(\mathbb{R}^n)} \leq \|f\|_{L^p(\mathbb{R}^n)} \|g\|_{L^1(\mathbb{R}^n)}.
\]

Problem 2. Let \(E \subset \mathbb{R}^n \) be measurable and \(\Omega \subset \mathbb{R}^m \) be an open set, and define for a measurable function \(f : E \times \Omega \to \mathbb{R} \)
\[
F(y) \overset{\text{def}}{=} \int_E f(x, y) \, dx , \quad y \in \Omega.
\]
Assume that \(f \), \(\partial f / \partial y_j \in C(E \times \Omega, \mathbb{R}) \), \(j = 1, \ldots, m \). Suppose furthermore that there exist functions \(\phi, \psi_j \in L^1(E) \) such that for \(x \in E \) and \(y \in \Omega \) one has
\[
|f(x, y)| \leq \phi(x) , \quad \left| \frac{\partial f}{\partial y_j}(x, y) \right| \leq \psi_j(x) , \quad j = 1, \ldots, m.
\]
Prove that under such hypothesis one has \(F \in C^1(\Omega) \), and for every \(j = 1, \ldots, m \)
\[
\frac{\partial F}{\partial y_j}(y) = \int_E \frac{\partial f}{\partial y_j}(x, y) \, dx .
\]

Problem 3. Consider in \(\mathbb{R}^3 \) the function
\[
F(\xi) \overset{\text{def}}{=} \int_{S^2} e^{-i \langle \xi, \omega \rangle} \, d\sigma(\omega) , \quad \xi \in \mathbb{R}^3.
\]

a) Determine the range of \(p \in [1, \infty] \) such that \(F \in L^p(\mathbb{R}^3) \).
b) Determine the range of \(a > 0 \) for which the function \(F(\xi) / |\xi|^a \) is Riemann integrable in the improper sense in \(\mathbb{R}^3 \). By this we mean that there exists finite
\[
\lim_{\epsilon \to 0, R \to \infty} \int_{\epsilon < |\xi| < R} \frac{F(\xi)}{|\xi|^a} \, d\xi .
\]

Problem 4. For \(\lambda > 0 \) define
\[
F(\xi) \overset{\text{def}}{=} \int_{S^{n-1}} e^{i \sqrt{\lambda} \langle \xi, \omega \rangle} \, d\sigma(\omega) , \quad \xi \in \mathbb{R}^n.
\]
a) Prove that \(F \in C^\infty(\mathbb{R}^n) \).

b) Prove that \(F \) is an eigenfunction of the Laplacian with corresponding eigenvalue \(\lambda \), i.e., \(F \) solves the equation in \(\mathbb{R}^n \)

\[
\Delta F = -\lambda F.
\]

c) Prove that \(F \) is spherically symmetric.

Problem 5. Let \(f \in C_0^\infty(\mathbb{R}) \). Prove that for any \(k \in \mathbb{N} \) there exists \(C = C(f, k) > 0 \), such that for \(\xi \in \mathbb{R} \setminus \{0\} \) one has

\[
|\hat{f}(\xi)| \leq \frac{C}{|\xi|^k}.
\]