Abstract

The classical Euler zeta function (1736) is

\[\zeta(s) = \sum_{n=1}^{\infty} n^{-s}. \]

The series converges uniformly on compact subsets of the half-plane \(\Re s > 1 \) and represents an analytic function which admits analytic continuation to the complex plane with the exception of a simple pole at \(s = 1 \). The Euler product

\[\zeta(s)^{-1} = \prod (1 - p^{-s}) \]

taken over the primes \(p \) converges uniformly on compact subsets of the half-plane and denies zeros of the zeta function in the half-plane. The Riemann hypothesis (1859) is the conjecture that the function has no zeros in the half-plane \(\Re s > \frac{1}{2} \). The absence of zeros on the line \(\Re s = 1 \) was shown in 1896 independently by Hadamard and de la Vallée Poussin. Estimates in the right half of the critical strip \(0 < \Re s < 1 \) show that the product converges and denies zeros of the zeta function there. The estimates are obtained in \(p \)-adic Fourier analysis for all primes \(p \). The origin of the estimates lies in properties of Fourier analysis which are the subject of the lecture. (Course 69000 on the Riemann hypothesis meets MWF at 9:30 in University 319).

Refreshments will be served in the Math Library Lounge at 4:00 p.m.