MATH 450

Midterm Exam 2 Solutions

Instructions: Give a complete solution to each problem. You may use any result from class, the book, or homework **except** the statement you are asked to prove. You may also use any fact established in Calculus or Linear Algebra classes. Be sure to justify your statements.

Notation:

$$\operatorname{Syl}_p(G) = \{P \subset G | P \text{ is a Sylow } p - \operatorname{subgroup of } G\}$$

 $n_p(G) = |\operatorname{Syl}_p(G)|.$
If $\sigma \in S_n$ and $\sigma = (a_{11}a_{12}\cdots a_{1m_1})(a_{21}a_{22}\cdots a_{2m_2})\cdots (a_{r1}a_{r2}\cdots a_{rm_r})$, as a product of disjoint cycles, then we say σ has **cycle type** $m_1, m_2, \ldots m_r$.

(5 points) Let G be a group and N ⊲G. Let G
 = G/N, and for x ∈ G denote by x
 the element xN ∈ G

 Solution: By definition of the product in G/N, we have x

 x
 x = *x* = *x*

 $\bar{x}\bar{y} = \bar{y}\bar{x}$ if and only if $\overline{xy} = \overline{yx}$,

if and only if $(xy)(yx)^{-1} \in N$ if and only if $xyx^{-1}y^{-1} \in N$. \Box

- 2. (4 points each) Let $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 2 & 1 & 4 & 6 & 8 & 5 & 7 \end{pmatrix}$ and $\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 3 & 2 & 5 & 4 & 8 & 7 & 6 \end{pmatrix}$.
 - (a) Write $\alpha\beta$ as a product of disjoint cycles.
 - (b) Write $\alpha\beta$ as a product of transpositions.
 - (c) Compute α^{-1} .

Solution: By direct computation, we get,

- (a) $\alpha\beta = (132)(4675)$.
- (b) $\alpha\beta = (12)(13)(45)(47)(46)$.

$$\alpha^{-1} = \begin{pmatrix} 3 & 2 & 1 & 4 & 6 & 8 & 5 & 7 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 2 & 1 & 4 & 7 & 5 & 8 & 6 \end{pmatrix}$$

- 3. True/False (6 points each) Determine whether each of the following statements is true or false. If true, give a proof. If false, give a concrete counterexample.
 - (a) If H and K are subgroups of a group G, with $H \triangleleft K$ and $K \triangleleft G$, then $H \triangleleft G$.
 - (b) If H is a subgroup of $G_1 \times G_2$, then $H = H_1 \times H_2$, for some subgroups H_1 of G_1 and H_2 of G_2 .
 - (c) If α is an odd permutation, then α^{-1} is an odd permutation.

Solution:

- (a) False Let $G = D_4$, $K = \{1, (12)(34), (13)(24), (14)(23)\}$, and $H = \{1, (12)(34)\}$. Note $K \triangleleft G$, since K is of index 2 in G, and similarly $H \triangleleft K$, but $(1234)(12)(34)(1234)^{-1} = (1234)((12)(34)(1432) = (14)(23 \notin H)$, so H is not normal in G.
- (b) **False** Let $G = \mathbb{Z}_2 \times \mathbb{Z}_2$, and $H = \{(0,0), (1,1)\}$. Then we cannot find H_1 , and H_2 with $H \simeq H_1 \times H_2$.
- (c) **True** We have $e = \alpha \alpha^{-1}$, an since e is an even permutation, and α is odd, then α^{-1} is also odd.
- 4. (a) (9 points) Prove that if $\sigma, \tau \in S_n$ have the same cycle type, then there is some $\rho \in S_n$ with $\tau = \rho \sigma \rho^{-1}$.
 - (b) (11 points) What is the order of the centralizer, $C_{S_n}((123\cdots n)) = C((123\cdots n))$ of $(123\cdots n)$ in S_n ?

Solution

(a) Let

$$\sigma = (a_{11}a_{12}\dots a_{1m_1})(a_{21}a_{22}\dots a_{2m_2})\cdots (a_{r1}a_{r2}\dots a_{rm_r})$$

and

$$\tau = (b_{11}b_{12}\dots b_{1m_1})(b_{21}b_{22}\dots b_{2m_2})\cdots (b_{r1}b_{r2}\dots b_{rm_r})$$

Let $S = \{a_{ij} | 1 \le i \le r, 1 \le j \le m_i\}$ and $T = \{b_{ij} | 1 \le i \le r, 1 \le j \le m_i\}$. Note, |S| = |T|. Let k = |S|. Let $S' = \{1, 2, \dots, n\} \setminus S = \{1 \le i \le n | i \notin S\}$ and similarly, let $T' = \{1, 2, \dots, n\} \setminus T$. Note, |S'| = |T'| = n - k. Fix any one to one (and hence onto) function $\rho' : S' \to T'$. Let

$$\rho(s) = \begin{cases} b_{ij} & \text{if } s = a_{ij}, \\ \rho'(s) & \text{if } s \notin S. \end{cases}$$

Note, if $\rho(s) = \rho(t)$, and $s \in S$, then $\rho(s) \in T$, so $\rho(t) \in T$, and so s = t, since the cycles of σ and τ are disjoint. If $s \in S'$, then $\rho(s) = \rho(t) \in T'$, and by the definition of ρ' we also have s = t. Thus, ρ is one-to-one, and hence also onto. Now if $b_{ij} \in T$, then

(1)
$$\rho \sigma \rho^{-1}(b_{ij}) = \rho(\sigma(a_{ij})) = \rho(a_{i(j+1)}) = b_{i(j+1)},$$

with j + 1 taken modulo m_i . If $t \in T'$, then $s = \rho^{-1}(t) \in S'$, so $\sigma(s) = s$. Thus,

(2)
$$\rho \sigma \rho^{-1}(t) = \rho(\sigma(s)) = \rho(s) = t.$$

Then, (1) and (2) show $\rho\sigma\rho^{-1} = \tau$.

(b) By (a) the conjugacy class C of $(12 \cdots n)$ is the set of all *n*-cycles in S_n , i.e.,

$$\mathcal{C} = \{ (a_1 a_2 \dots a_n) \in S_n \}.$$

Now note

$$(a_1a_2...a_n) = (a_2a_3...a_na_1) = \cdots = (a_na_1...a_{n-1}).$$

Thus

$$|\mathcal{C}| = \frac{n!}{n} = (n-1)!.$$

By the Orbit-Stabilizer Theorem,

$$|\mathcal{C}| = \frac{|S_n|}{|C((12\dots n))|}.$$

So,

$$(n-1)! = \frac{n!}{|C((12\dots n))|},$$

Which shows |C(12...n)| = n.

Remark: Note this shows that an n-cycle only commutes with its powers.

5. (8 points each)

- (a) Show that a group of order 56 must have a normal Sylow *p*–subgroup for some *p*.
- (b) Let G be a finite group, and suppose Q is a normal p-subgroup of G. Show that if P is a Sylow p-subgroup, then $Q \subset P$.

Solution:

(a) By Sylow II, a Sylow p-subgroup P is normal in G if and only if it is the unique Sylow p-subgroup, i.e., if and only if n_p = 1. By Sylow III we have n_p ≡ 1(modp) and n_p | (|G|/|P|). Since 56 = 2³ · 7, we have n₇ = 1 or 8. Suppose n₇ = 8, P, Q ∈ Syl₇(G), with P ≠ Q. Since |P| = |Q| = 7, we see P ∩ Q = {e}. Thus, there are 8 · 6 = 48 elements of order 7 in G. Thus, there are at most 8 elements in G with order dividing 8. Since there must be 8 such

elements in any Sylow 2-subgroup, we see $n_2 = 1$. So either $n_7 = 1$ or $n_2 = 1$, and thus G always has a normal Sylow subgroup.

- (b) By the proof of Sylow II, we know Q ⊂ P, for some P ∈ Syl_p(G). Now, if P' ∈ Syl_p(G), we have P' = xPx⁻¹ for some x ∈ G by Sylow II. Since Q ⊲ G, we have xQx⁻¹ = Q. Thus, Q = xQx⁻¹ ⊂ xPx⁻¹ = P'. So Q ⊂ P' for all P' ∈ Syl_p(G).
- 6. (a) (4 points) State the Fundamental Theorem of Finite Abelian Groups
 - (b) (8 points) List all the isomorphism classes of abelian groups of order 200. Solution:
 - (a) **Theorem: The Fundamental Theorem of Finite Abelian Groups** Any finite abelian group is a direct product of cyclic groups. In particular, any finite abelian group is a direct product of cyclic groups of prime power order.
 - (b) Since $200 = 2^3 5^2$, we know an abelian group of order 200 is isomorphic to one of the following:
 - i) $G_1 = \mathbb{Z}_8 \times \mathbb{Z}_{25} \simeq \mathbb{Z}_{200};$
 - ii) $G_2 = \mathbb{Z}_4 \times \mathbb{Z}_2 \times \mathbb{Z}_{25};$
 - iii) $G_3 = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_{25};$
 - iv) $G_4 = \mathbb{Z}_8 \times \mathbb{Z}_5 \times \mathbb{Z}_5;$
 - v) $G_5 = \mathbb{Z}_4 \times \mathbb{Z}_2 \times \mathbb{Z}_5 \times \mathbb{Z}_5;$
 - vi) $G_6 = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_5 \times \mathbb{Z}_5.$
- 7. (17 points) State the First Homomorphism Theorem (also known as the First Isomorphism Theorem).

Theorem: If $\varphi : G \to G'$ is a homomorphism, with kernel K, then $\varphi(G) \simeq G/K$, with the isomorphism given by $\psi(Ka) = \varphi(a)$.

Extra Credit: (10 points) Suppose $P \in \text{Syl}_p(G)$, and $H = N_G(P)$. Prove $N_G(H) = H$.

Solution:

Note, since $P \subset H$, we have |P|||H|. So, if $|G| = p^n m$, with $p \not\mid m$, then $|H| = p^n k$, with $p \not\mid k$. Thus, $P \in \operatorname{Syl}_p(H)$. Also, note, by definition, $H = \{x | x P x^{-1} = P\}$, and so $P \triangleleft H$. Thus, $n_p(H) = 1$. Now, if $g \in N_G(H)$, then $gHg^{-1} = H$. Thus, $gPg^{-1} \subset H$, and so $gPg^{-1} \in \operatorname{Syl}_p(H)$. Therefore, by what we said above, $gPg^{-1} = P$. Therefore, $g \in N_G(P) = H$. Thus, $N_G(H) = H$.