MATH 450

Midterm Exam 2

Solutions

Instructions: Give a complete solution to each problem. You may use any result from class, the book, or homework except the statement you are asked to prove. You may also use any fact established in Calculus or Linear Algebra classes. Be sure to justify your statements.

Notation:
$\operatorname{Syl}_{p}(G)=\{P \subset G \mid P$ is a Sylow $p-$ subgroup of $G\}$
$n_{p}(G)=\left|\operatorname{Syl}_{p}(G)\right|$.
If $\sigma \in S_{n}$ and $\sigma=\left(a_{11} a_{12} \cdots a_{1 m_{1}}\right)\left(a_{21} a_{22} \cdots a_{2 m_{2}}\right) \cdots\left(a_{r 1} a_{r 2} \cdots a_{r m_{r}}\right)$, as a product of disjoint cycles, then we say σ has cycle type $m_{1}, m_{2}, \ldots m_{r}$.

1. (5 points) Let G be a group and $N \triangleleft G$. Let $\bar{G}=G / N$, and for $x \in G$ denote by \bar{x} the element $x N \in \bar{G}$. Show that \bar{x} and \bar{y} commute in \bar{G} if and only if $x y x^{-1} y^{-1} \in N$.
Solution: By definition of the product in G / N, we have $\bar{x} \bar{y}=\overline{x y}$. So,

$$
\bar{x} \bar{y}=\bar{y} \bar{x} \text { if and only if } \overline{x y}=\bar{y} \bar{x},
$$

if and only if $(x y)(y x)^{-1} \in N$ if and only if $x y x^{-1} y^{-1} \in N$.
2. (4 points each) Let $\alpha=\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 2 & 1 & 4 & 6 & 8 & 5 & 7\end{array}\right)$ and $\beta=\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 3 & 2 & 5 & 4 & 8 & 7 & 6\end{array}\right)$.
(a) Write $\alpha \beta$ as a product of disjoint cycles.
(b) Write $\alpha \beta$ as a product of transpositions.
(c) Compute α^{-1}.

Solution: By direct computation, we get,
(a) $\alpha \beta=(132)(4675)$.
(b) $\alpha \beta=(12)(13)(45)(47)(46)$.
(c)

$$
\alpha^{-1}=\left(\begin{array}{llllllll}
3 & 2 & 1 & 4 & 6 & 8 & 5 & 7 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array}\right)=\left(\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
3 & 2 & 1 & 4 & 7 & 5 & 8 & 6
\end{array}\right)
$$

3. True/False (6 points each) Determine whether each of the following statements is true or false. If true, give a proof. If false, give a concrete counterexample.
(a) If H and K are subgroups of a group G, with $H \triangleleft K$ and $K \triangleleft G$, then $H \triangleleft G$.
(b) If H is a subgroup of $G_{1} \times G_{2}$, then $H=H_{1} \times H_{2}$, for some subgroups H_{1} of G_{1} and H_{2} of G_{2}.
(c) If α is an odd permutation, then α^{-1} is an odd permutation.

Solution:

(a) False Let $G=D_{4}, K=\{1,(12)(34),(13)(24),(14)(23)\}$, and $H=\{1,(12)(34)\}$.

Note $K \triangleleft G$, since K is of index 2 in G, and similarly $H \triangleleft K$, but $(1234)(12)(34)(1234)^{-1}=$ $(1234)((12)(34)(1432)=(14)(23 \notin H$, so H is not normal in G.
(b) False Let $G=\mathbb{Z}_{2} \times \mathbb{Z}_{2}$, and $H=\{(0,0),(1,1)\}$. Then we cannot find H_{1}, and H_{2} with $H \simeq H_{1} \times H_{2}$.
(c) True We have $e=\alpha \alpha^{-1}$, an since e is an even permutation, and α is odd, then α^{-1} is alos odd.
4. (a) (9 points) Prove that if $\sigma, \tau \in S_{n}$ have the same cycle type, then there is some $\rho \in S_{n}$ with $\tau=\rho \sigma \rho^{-1}$.
(b) (11 points) What is the order of the centralizer, $C_{S_{n}}((123 \cdots n))=C((123 \cdots n))$ of $(123 \cdots n)$ in S_{n} ?

Solution

(a) Let

$$
\sigma=\left(a_{11} a_{12} \ldots a_{1 m_{1}}\right)\left(a_{21} a_{22} \ldots a_{2 m_{2}}\right) \cdots\left(a_{r 1} a_{r 2} \ldots a_{r m_{r}}\right)
$$

and

$$
\tau=\left(b_{11} b_{12} \ldots b_{1 m_{1}}\right)\left(b_{21} b_{22} \ldots b_{2 m_{2}}\right) \cdots\left(b_{r 1} b_{r 2} \ldots b_{r m_{r}}\right)
$$

Let $S=\left\{a_{i j} \mid 1 \leq i \leq r, 1 \leq j \leq m_{i}\right\}$ and $T=\left\{b_{i j} \mid 1 \leq i \leq r, 1 \leq j \leq m_{i}\right\}$. Note, $|S|=|T|$. Let $k=|S|$. Let $S^{\prime}=\{1,2, \ldots, n\} \backslash S=\{1 \leq i \leq n \mid i \notin S\}$ and similarly, let $T^{\prime}=\{1,2, \ldots, n\} \backslash T$. Note, $\left|S^{\prime}\right|=\left|T^{\prime}\right|=n-k$. Fix any one to one (and hence onto) function $\rho^{\prime}: S^{\prime} \rightarrow T^{\prime}$. Let

$$
\rho(s)=\left\{\begin{array}{lc}
b_{i j} & \text { if } s=a_{i j} \\
\rho^{\prime}(s) & \text { if } s \notin S
\end{array}\right.
$$

Note, if $\rho(s)=\rho(t)$, and $s \in S$, then $\rho(s) \in T$, so $\rho(t) \in T$, and so $s=t$, since the cycles of σ and τ are disjoint. If $s \in S^{\prime}$, then $\rho(s)=\rho(t) \in T^{\prime}$, and by the definition of ρ^{\prime} we also have $s=t$. Thus, ρ is one-to-one, and hence also onto. Now if $b_{i j} \in T$, then

$$
\begin{equation*}
\rho \sigma \rho^{-1}\left(b_{i j}\right)=\rho\left(\sigma\left(a_{i j}\right)\right)=\rho\left(a_{i(j+1)}\right)=b_{i(j+1)}, \tag{1}
\end{equation*}
$$

with $j+1$ taken modulo m_{i}. If $t \in T^{\prime}$, then $s=\rho^{-1}(t) \in S^{\prime}$, so $\sigma(s)=s$. Thus,

$$
\begin{equation*}
\rho \sigma \rho^{-1}(t)=\rho(\sigma(s))=\rho(s)=t . \tag{2}
\end{equation*}
$$

Then, (1) and (2) show $\rho \sigma \rho^{-1}=\tau$.
(b) By (a) the conjugacy class \mathcal{C} of $(12 \cdots n)$ is the set of all n-cycles in S_{n}, i.e.,

$$
\mathcal{C}=\left\{\left(a_{1} a_{2} \ldots a_{n}\right) \in S_{n}\right\} .
$$

Now note

$$
\left(a_{1} a_{2} \ldots a_{n}\right)=\left(a_{2} a_{3} \ldots a_{n} a_{1}\right)=\cdots=\left(a_{n} a_{1} \ldots a_{n-1}\right) .
$$

Thus

$$
|\mathcal{C}|=\frac{n!}{n}=(n-1)!
$$

By the Orbit-Stabilizer Theorem,

$$
|\mathcal{C}|=\frac{\left|S_{n}\right|}{|C((12 \ldots n))|}
$$

So,

$$
(n-1)!=\frac{n!}{|C((12 \ldots n))|}
$$

Which shows $|C(12 \ldots n)|=n$.
Remark: Note this shows that an n-cycle only commutes with its powers.

5. (8 points each)

(a) Show that a group of order 56 must have a normal Sylow p-subgroup for some p.
(b) Let G be a finite group, and suppose Q is a normal p-subgroup of G. Show that if P is a Sylow p-subgroup, then $Q \subset P$.

Solution:

(a) By Sylow II, a Sylow p-subgroup P is normal in G if and only if it is the unique Sylow p-subgroup, i.e., if and only if $n_{p}=1$. By Sylow III we have $n_{p} \equiv 1(\bmod p)$ and $n_{p} \mid(|G| /|P|)$. Since $56=2^{3} \cdot 7$, we have $n_{7}=1$ or 8 . Suppose $n_{7}=8, P, Q \in \operatorname{Syl}_{7}(G)$, with $P \neq Q$. Since $|P|=|Q|=7$, we see $P \cap Q=\{e\}$. Thus, there are $8 \cdot 6=48$ elements of order 7 in G. Thus, there are at most 8 elements in G with order dividing 8 . Since there must be 8 such
elements in any Sylow 2-subgroup, we see $n_{2}=1$. So either $n_{7}=1$ or $n_{2}=1$, and thus G always has a normal Sylow subgroup.
(b) By the proof of Sylow II, we know $Q \subset P$, for some $P \in \operatorname{Syl}_{p}(G)$. Now, if $P^{\prime} \in \operatorname{Syl}_{p}(G)$, we have $P^{\prime}=x P x^{-1}$ for some $x \in G$ by Sylow II. Since $Q \triangleleft G$, we have $x Q x^{-1}=Q$. Thus, $Q=x Q x^{-1} \subset x P x^{-1}=P^{\prime}$. So $Q \subset P^{\prime}$ for all $P^{\prime} \in \operatorname{Syl}_{p}(G)$.
6. (a) (4 points) State the Fundamental Theorem of Finite Abelian Groups
(b) (8 points) List all the isomorphism classes of abelian groups of order 200.

Solution:

(a) Theorem: The Fundamental Theorem of Finite Abelian Groups Any finite abelian group is a direct product of cyclic groups. In particular, any finite abelian group is a direct product of cyclic groups of prime power order.
(b) Since $200=2^{3} 5^{2}$, we know an abelian group of order 200 is isomorphic to one of the following:
i) $G_{1}=\mathbb{Z}_{8} \times \mathbb{Z}_{25} \simeq \mathbb{Z}_{200}$;
ii) $G_{2}=\mathbb{Z}_{4} \times \mathbb{Z}_{2} \times \mathbb{Z}_{25}$;
iii) $G_{3}=\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{25}$;
iv) $G_{4}=\mathbb{Z}_{8} \times \mathbb{Z}_{5} \times \mathbb{Z}_{5}$;
v) $G_{5}=\mathbb{Z}_{4} \times \mathbb{Z}_{2} \times \mathbb{Z}_{5} \times \mathbb{Z}_{5}$;
vi) $G_{6}=\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{5} \times \mathbb{Z}_{5}$.
7. (17 points) State the First Homomorphism Theorem (also known as the First Isomorphism Theorem).

Theorem: If $\varphi: G \rightarrow G^{\prime}$ is a homomorphism, with kernel K, then $\varphi(G) \simeq G / K$, with the isomorphism given by $\psi(K a)=\varphi(a)$.

Extra Credit: (10 points) Suppose $P \in \operatorname{Syl}_{p}(G)$, and $H=N_{G}(P)$. Prove $N_{G}(H)=H$.

Solution:

Note, since $P \subset H$, we have $|P|||H|$. So, if $| G \mid=p^{n} m$, with $p \nmid m$, then $|H|=p^{n} k$, with $p \nmid k$. Thus, $P \in \operatorname{Syl}_{p}(H)$. Also, note, by definition, $H=\left\{x \mid x P x^{-1}=P\right\}$, and so $P \triangleleft H$. Thus, $n_{p}(H)=1$. Now, if $g \in N_{G}(H)$, then $g H g^{-1}=H$. Thus, $g P g^{-1} \subset H$, and so $g P g^{-1} \in \operatorname{Syl}_{p}(H)$. Therefore, by what we said above, $g P g^{-1}=P$. Therefore, $g \in N_{G}(P)=H$. Thus, $N_{G}(H)=H$.

