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Abstract. We determine the reducibility and number of components of any representation of SLn(F )

which is parabolically induced from a discrete series representation. The R-groups are computed in terms

of restriction from GLn(F ), extending the results of Gelbart and Knapp. This yields an explicit descrip-
tion of the elliptic tempered representations of SLn(F ). We also describe those tempered representations

which are not irreducibly induced from elliptic representations.

To Elizabeth:

Introduction. We continue our investigation of those representations of classical

p-adic groups which are parabolically induced from the discrete series. We now consider

the group G = SLn(F ). We will describe explicit criteria for reducibility of induced rep-

resentations, determine the number of constituents of such representations, and develop

criteria for the constituents to be elliptic. Moreover, we can describe those irreducible tem-

pered representations of G which are not elliptic, and are also not irreducibly induced

from an elliptic representation.

We use the technique of restriction from G̃ = GLn(F ). This technique has been used

by several authors to describe various aspects of the representation theory of G [4,5,

6,7,14,19,20,21,22,24,30]. Our purpose here is to use some of these results to obtain

information on the structure of the generalized principal series for G.

Let P = MN be a parabolic subgroup of G. Suppose that σ is an irreducible

discrete series representation of M. We wish to determine when the unitarily induced

representation iG,M (σ) is reducible, and if so, what is the structure of its components.

We use the theory of R-groups, as developed by Knapp and Stein [18], and Silberger [28].

This, along with the multiplicity one result of Howe and Silberger [14], determines the

structure of the commuting algebra C(σ).

The R-group is a quotient of the subgroup, W (σ), of Weyl group elements which fix

σ. If ∆′ is the collection of reduced roots for which the Plancherel measure of σ vanishes,

then R ' W (σ)/W ′, where W ′ is the group generated by reflections in the roots in ∆′.
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For the groups Sp2n(F ) , SOn(F ), and Un(F ), we were able to explicitly describe the

group W (σ), and use the properties of Plancherel measures to determine which groups

could possibly arise as R-groups [9,10]. However, what precise R-groups can arise has yet

to be determined, since the explicit computation of Plancherel measures is not completed

in these cases. The R-groups for certain parabolics are understood completely [8,27]. In

the case of SLn, the Plancherel measures are well understood [24,25]. Moreover, there is

already a necessary condition, in terms of restriction, for a Weyl group element w to be

in W (σ) [24]. We show that this condition is sufficient, and thus we obtain an explicit

description for the R-group, where all the pieces are understood.

Let P̃ = M̃N be a parabolic of G̃, with P = P̃ ∩G, and M = M̃ ∩G. Then there

is a discrete series representation, πσ, of M̃ so that πσ|M contains σ as a constituent.

The components of πσ|M are said to be L-indistinguishable. Since iG,M (σ) ↪→ iG̃,M̃ (πσ),

the Plancherel measures for σ are the same as those for πσ [24]. The reducibility of

induced representations for GLn are well understood [3,23], and we know the Plancherel

measures for πσ explicitly [25]. Therefore, we know the zeros of the Plancherel measures

for σ by restriction. We then show that w ∈ W (σ) if and only if wπσ ' πσ ⊗ η ◦ det,

for some η ∈ F̂ (cf. Lemma 2.3). A lemma of Shahidi [24] shows that W ′ is the set

of w with the property that wπσ ' πσ. This gives an explicit description of R, as

a group of characters, and generalizes the results of [7]. For a fixed η, we construct a

unique element, wη, with wη ∈ R, and wηπσ ' πσ ⊗ η det (cf. Theorem 2.6). We use

this explicit description of the elements of R, and a theorem of Arthur [1], to describe

the elliptic tempered representations of G (cf. Theorem 3.4). We also give an explicit

description of those irreducible tempered representations of G which are not of the form

iG,M ′(τ) for some Levi subgroup M ′, and some elliptic representation τ of M ′ (cf.

Theorem 3.8). This is based on a result of Herb [13].

Many results on reducibility and number of components are also obtainable by the

method of Hecke algebra isomorphisms. Thus, our reducibility results should match those

in forthcoming work of Bushnell and Kutzko [5].

I would like to thank Rebecca Herb, Stephen Kudla, Phil Kutzko, Paul Sally, Freydoon
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Shahidi, and Marko Tadic for comments and conversations which furthered the results

herein. I would like to thank Anthony Knapp and the referee for pointing out some

oversights on my part.

§1 Preliminaries. Let F be a locally compact, non–discrete, nonarchimedean field

of characteristic zero. Let q be the residual characteristic of F. Let G be a connected

reductive quasi-split algebraic group defined over F. Let G be the F -rational points of

G. We say that an element x of G is elliptic if its centralizer is compact, modulo the

center of G. We let Ge denote the set of regular elliptic elements of G [12].

Let E2(G) denote the collection of equivalence classes of irreducible discrete series

representations of G, and denote by Et(G) the equivalence classes of irreducible tempered

representations of G. Then E2(G) ⊂ Et(G). If π ∈ Et(G), then we denote its character

by Θπ . Since Θπ can be viewed as a locally integrable function [11], we can consider

its restriction to Ge, which we denote by Θe
π. We say that π is elliptic if Θe

π 6= 0.

In general, we would like to describe Et(G), and explicitly determine which classes are

elliptic.

We say that M ⊆ G is a Levi subgroup of G if there is a parabolic subgroup P of

G with M as its Levi component. Let N be the unipotent radical of P. If A0 is a

maximal F -split torus of G, then we let Φ(G,A0) be the set of roots of A0 in G. Let

∆ be a collection of simple roots. Then the conjugacy classes of parabolic subgroups of

G are in one to one correspondence with subsets of ∆. If θ ⊂ ∆, then we let Aθ be the

subtorus of A0 corresponding to θ. Let B = TU be the Borel subgroup associated to

A∅ = A0. Then a Levi subgroup M is called standard if there is a parabolic P = MN,

with P ⊃ B. In this case, P is also called standard.

If M is a Levi subgroup with split component A, then we denote the Weyl group

NG(A)/ZG(A) by W (G/A) or W (A). Let w̃ ∈W (A), and choose a representative w

for w̃ in NG(A). If (σ, V ) is an irreducible tempered representation of M, then we let

w̃σ be the representation defined by the formula w̃σ(m) = σ(w−1mw). The class of w̃σ

is independent of the choice of w. We say that σ is ramified if there is some non–trivial

w̃ ∈ W (A), with w̃σ ' σ. We denote by IndGP (σ) the representation unitarily induced
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by σ. Since its class depends only on M, not P, we may also denote it by iG,M (σ).

We denote by X(M)F the collection of F -rational characters of M. We let

a = Hom(X(M)F ,Z), be the real Lie algebra of A, and let a∗C be the complexified

dual of a [12]. Then there is a homomorphism HP :M → a which satisfies

q<χ,HP (m)> = |χ(M)|F , ∀ χ ∈ X(M)F , m ∈M.

For any ν ∈ a∗C and σ ∈ E2(M), we let

I(ν, σ) = IndGP

(
σ ⊗ q<ν,HP ()>

)
.

The space V (ν, σ) of I(ν, σ) is given by

V (ν, σ) =
{
f : G→ V

∣∣f(mng) = δ
1/2
P (m)σ(m)q<ν,HP (m)>f(g), ∀g ∈ G,m ∈M,n ∈ N

}
.

Here δP is the modular function of P. If w̃ ∈ W (A), then we let Nw̃ = U ∩ w−1Nw,

where N is the unipotent radical opposed to N. We formally define an operator on

V (ν, σ) by

A(ν, σ, w)f(g) =

∫
Nw̃

f(w−1ng)dn.

If the integral converges for every choice of f and g, then we say that A(ν, σ, w) con-

verges. If A(ν, σ, w) converges then it defines an intertwining operator between I(ν, σ)

and I(wν, wσ).

Theorem 1.1 (Harish-Chandra). Let w̃ ∈W (A) and σ ∈ E2(M). Let P ′ be the

standard parabolic subgroup with Levi component w−1Mw. Then A(ν, σ, w) converges

for ν in the positive Weyl chamber, and can be extended to a meromorphic function of

ν on a∗C. Moreover, there is a complex number µ(ν, σ, w̃) so that

A(ν, σ, w)A(wν, wσ, w−1) = µ(ν, σ, w̃)−1γw̃(G/P )γw̃−1(G/P ′),

where the constant γw̃(G/P ) is defined in [12]. Moreover, ν → µ(ν, σ, w̃) is meromor-

phic on a∗C, and holomorphic on ia∗. �

The factor µ(ν, σ, w̃) is called the Plancherel measure associated to ν, σ and w̃.

When w̃ is the longest element of the Weyl group, we write µ(ν, σ) = µ(ν, σ, w̃), and write
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µ(σ) = µ(0, σ). If M is a maximal proper Levi subgroup, then iG,M (σ) is reducible if

and only if σ is ramified and µ(σ) 6= 0 [29]. One can normalize the intertwining opera-

tors A(ν, σ, w) by a meromorphic (in ν ) scalar factor to obtain a family of intertwining

operators A(ν, σ, w) with the following property [16,26]. If we let A(σ, w) = A(0, σ, w),

then these operators satisfy the cocycle condition

A(σ, w1w2) = A(w̃2σ, w1)A(σ, w2),

for all w̃1, w̃2 ∈ W (A). One consequence of this normalization is that the operators

A(ν, σ, w) are holomorphic on the unitary axis ia∗ [29]. Shahidi [26] has shown that

the Plancherel measures and normalizing factors are related to conjectural Langlands L-

functions.

Suppose w̃σ ' σ. Choose an intertwining operator T (w) with T (w)(w̃σ) = σT (w).

Then A′(σ, w) = T (w)A(σ, w) is a self intertwining operator for IndGP (σ). Let

W (σ) = {w̃ ∈W (A) | w̃σ ' σ}. Denote by C(σ) the commuting algebra of iG,M (σ).

Theorem 1.2 (Harish–Chandra [29, Theorem 5.5.4.3]).

The collection {A′(σ, w) | w̃ ∈W (σ)} spans the commuting algebra C(σ). �

The theory of the Knapp–Stein R-group tells us how to determine a basis for C(σ)

from among the A′(σ, w). Let Φ(P,A) be the reduced roots of P with respect to A,

and let β ∈ Φ(P,A). Let Aβ be the torus (ker β ∩A)o. Let Mβ denote the centralizer

of Aβ in G. Then M is a maximal proper Levi subgroup of Mβ. Let µβ(σ) be the

Plancherel measure attached to iMβ ,M (σ). Since M is a maximal proper Levi subgroup

of Mβ , we know µβ(σ) = 0 if and only if w̃σ ' σ, for some w̃ 6= 1 in W (Mβ/A),

and iMβ ,M (σ) is irreducible. We denote by ∆′ the collection of β ∈ Φ(P,A) such that

µβ(σ) = 0. We let

R = R(σ) = {w̃ ∈ W (σ) | w̃β > 0, ∀β ∈ ∆′}.

Let W ′ be the subgroup of W (σ) generated by the reflections in the roots of ∆′.
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Theorem 1.3 (Knapp–Stein, Silberger [18,28]). For any σ ∈ E2(M), we have

W (σ) = RnW ′. Furthermore, W ′ = {w̃ ∈W (σ) | A′(σ, w) is scalar }. �

Thus, {A′(w, σ) | w̃ ∈ R} is a basis for C(σ). The number of irreducible constituents

of iG,M (σ) is the number of irreducible representations of R, and the representation

corresponding to ρ ∈ R̂ appears with multiplicity dim ρ. Moreover, if w̃1, w̃2 ∈ R, then

A′(σ, w, w2) = η(w1, w2)A′(σ, w1)A′(σ, w2),

where the 2–cocycle η:R × R → C∗ satisfies T (w,w2) = η(w1, w2)T (w1)T (w2). It is

known that C(σ) ' C[R]η, where C[R]η is the complex group algebra, twisted by the

cocycle η. The multiplicity of each constituent of iG,M (σ) is equal to one if and only

if R is abelian and η splits [16,17]. The isotypic components of iG,M (σ) can be

parameterized by the irreducible representations of R [17].

We now assume that R is abelian and C(σ) ' C[R]. For each w̃ ∈ R, we let

aw̃ = {H ∈ a | w ·H = H}. Let Z be the split component of G, and let z be the real

lie algebra of Z. Let aR =
⋂̃
w∈R
aw̃.

Theorem 1.4 (Arthur [1, Proposition 2.1]).

Suppose R is abelian and C(σ) ' C[R]. Then the following are equivalent:

(a) iG,M (σ) has an elliptic constituent,

(b) all the constituents of iG,M (σ) are elliptic,

(c) There is a w̃ ∈ R with aw̃ = z. �

Theorem 1.5 (Herb [13]). Suppose R is abelian and C(σ) ' C[R]. Let π be an

irreducible constituent of iG,M (σ). Then π = iG,M ′(τ) for a proper Levi subgroup M ′

and some τ ∈ Et(M ′) if and only if aR 6= z. Moreover, M ′ and τ can be chosen with

τ elliptic if and only if there is a w̃0 ∈ R with aR = aw̃0
. �

We will use these last two theorems to describe the irreducible tempered representations

of SLn(F ) which are elliptic, and those which are not irreducibly induced from elliptic

representations.
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One of our main tools is the use of restriction theorems. We state those we need below.

Tadic [30] has extended these results to the case where the quotient is not necessarily finite,

but H is of the form G1Z(G), with G1 the derived group of G.

Theorem 1.6 (Gelbart–Knapp [7]). Let G be a totally disconnected group, and

suppose that H is an open normal subgroup of G, with G/H a finite abelian group.

(a) If π is an irreducible admissible representation of G, then π|H is the finite direct

sum of irreducible admissible representations. Each component of π|H appears with

the same multiplicity.

(b) If σ is an irreducible constituent of π|H , and Gσ = {g ∈ G | g · σ ' σ}, then

G/Gσ permutes the inequivalent components of π|H simply and transitively. (Here

g · σ(x) = σ(g−1xg). )

(c) If σ is an irreducible admissible representation of H, then there is an irreducible

admissible representation πσ of G so that πσ|H contains σ.

(d) Suppose π and π′ are irreducible admissible representations of G such that both

π|H and π′|H decompose with multiplicity one. Suppose σ is a constituent of both

π|H and π′|H . Then π|H ' π′|H , and π′ ' π ⊗ η, where η is a character of G,

which is trivial on H.

§2 The group SLn .

Let F be as in Section 1. Let Gn = SLn and G̃n = GLn, as defined over F. We

let Gn = Gn(F ) and G̃n = G̃n(F ). If the dimension is clear we may just write G or

G̃. Let Z̃ = Z̃n be the center of G̃.

Let Ã0 ⊂ G̃ be the subgroup of diagonal matrices, and let A0 = G∩ Ã0. Let U be

the subgroup of unipotent upper triangular matrices. Then U ⊂ G, and B̃ = Ã0U is a

Borel subgroup of G̃, while B = A0U is one of G. Let Φ(G,A0) = Φ(G̃, Ã0) be the

roots of A0 in G. Let ∆ = {ei − ei+1}n−1
i=1 be the collection of simple roots given by

B. Let θ ⊂ ∆, and let P̃θ = M̃θNθ be the associated standard parabolic subgroup of

G̃. Then Pθ = P̃θ ∩G = MθNθ, with Mθ = M̃θ ∩G, is a standard parabolic subgroup
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of G, and every standard parabolic arises in this way. Suppose M̃ = M̃θ. Then there is

a partition m1 +m2 + . . .+mr = n, such that

M̃ ' G̃m1
× G̃m2

× . . .× G̃mr .

Specifically,

M̃ =



g1 0

g2

. . .

0 gr


∣∣∣∣∣ gi ∈ G̃mi

 .

Then

M = M̃ ∩G =


 g1

. . .

gr

 ∣∣∣∣∣ gi ∈ G̃midet g1 · det g2 · . . . · det gr = 1

 .

Let Ã = Ãθ be the split component of M̃, and A = Ã ∩G that of M. Then

Ã =



λ1

λ2

. . .

λr


∣∣∣∣∣ λi ∈ F×

 ,

where by λi we really mean λiImi . Thus,

A =


λ2

. . .

λr

 ∣∣∣∣∣ λm1
1 λm2

2 . . . λmrr = 1

 .

The Weyl group W = W (G/A) ' W (G̃/Ã), is isomorphic to a subgroup of Sr. More

precisely, W is generated by the transpositions (ij) for which mi = mj . If (ij) is in

W, then

(ij) · (λ1, . . . , λi, . . . , λj, . . . , λr) = (λ1, . . . , λj, . . . , λi, . . . , λr).

Let M0 be the derived group of M̃.

M0 =


 g1

. . .

gr

 ∣∣∣∣∣ gi ∈ Gmi
 ' Gm1

× . . .×Gmr .
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Note that M0 is also the derived group of M. Let ϕ:M −→ F× × . . .× F×︸ ︷︷ ︸
r−1 times

be given

by

ϕ(g1, g2, . . . , gr) = (det g1, det g2, . . . , det gr−1).

We note that we have the following exact sequences.

1→ GnZ̃n → G̃n
det→ F×/(F×)n → 1(2.1)

1→MÃ→ M̃
det→ F×/

((
F×
)m1

(F×)m2 . . . (F×)mr
)
→ 1(2.2)

1→M0A→M
ϕ→ F×/(F×)m1 × F×/(F×)m2 × . . .× F×/(F×)mr−1 → 1.(2.3)

We will choose specific splittings in order to simplify our later arguments. For each m ≥ 1

let {am,1, am,2, . . . am,tm} be a collection of representatives for F×/(F×)m. For each

(m, i), let am,i =

(
am,i

Im−1

)
. Then an,i 7→ an,i splits (2.1).

Similarly, if y is a representative for F×/ ((F×)m1(F×)m2 . . . (F×)mr , ) then we let

ỹ =

(
y

In−1

)
. Then y 7→ ỹ splits (2.2). Now let

a = (am1,i1 , am2,i2 , . . . amr−1,ir−1
) ∈

r−1∏
j=1

F×/(F×)mj .

Let λ(a) = am1,i1 · am2,i2 . . . amr−1ir−1
. Then we let

ψ(a) =



am1,i1

am2,i2

. . .

amr−1ir−1

λ(a)
−1

 .

Clearly, ψ splits (2.3).

Note that if π ∈ E2(G̃n), and we write π|Gn =
⊕
j

ρj, then [24,30] each ρj appears

with multiplicity one. Theorem 1.6(b) implies that the an,i permute the constituents ρj

transitively. The representations ρj are said to form an L-packet for Gn. We also say

that the ρj are L-indistinguishable.

9



Let σ ∈ E2(M). Then, by Theorem 1.6(c), there is some πσ ∈ E2(M̃) with πσ|M ⊃ σ.
Moreover, if π′σ is another such representation, then π′σ = πσ⊗η ·det, for some character

η of F× (Theorem 1.6(d)). We denote πσ⊗η ·det by πσ⊗η. Let πσ = π1⊗π2⊗. . .⊗πr,

with each πi ∈ E2(G̃mi). Let πσ|M =
⊕
i

σi, with σ1 = σ. We again say that the

representations σi are L-indistinguishable, and say that {σi} forms an L-packet of M.

The reason for this terminology is discussed in [7]. If w ∈ W (G/A), and we realize w

as a permutation on r letters, then wπσ ' πw(1) ⊗ πw(2) ⊗ . . .⊗ πw(r).

Note that if πi|Gmi =
bi⊕
j=1

ρij , then πσ|M0
=
⊕
{ji}

r⊗
i=1

ρiji is multiplicity free. Thus,

for i 6= k, HomM0
(σk, σi) = {0}. Note that this (redundantly) implies that πσ|M is

multiplicity free.

Lemma 2.1 (Shahidi [24]). Let σ ∈ E2(M) and choose πσ ∈ E2(M̃) which contains

σ upon restriction to M. Let α ∈ Φ(P,A). Then

(a) iG,M (σ) ↪→ iG̃,M̃ (πσ);

(b) iMα,M (σ) ↪→ iM̃α,M̃
(πσ);

(c) µα(σ) = µα(πσ).

For 1 ≤ i ≤ r, let ci =
i∑

j=1

mi. For 1 ≤ i < j ≤ r, let αij = eci − ecj−1+1. Then

{αij | 1 ≤ i < j ≤ r} is a complete set of representatives for the reduced roots, Φ(P,A).

Corollary 2.2. Let σ and πσ be as in Lemma 2.1. Suppose πσ = π1 ⊗ . . .⊗ πr.
Then αij ∈ ∆′ if and only if πi ' πj .

Proof. Let α = αij . Recall that α ∈ ∆′ if and only if µα(σ) = 0. By Lemma 2.1,

µα(σ) = 0 if and only if µα(πσ) = 0. By [3,25] this is equivalent to πi ' πj . �

We now describe the group W (σ) in terms of the representation πσ.

Lemma 2.3. Let σ ∈ E2(M), and suppose πσ ∈ E2(M̃) with πσ|M ⊃ σ. Then

W (σ) = {w ∈W | wπσ ' πσ ⊗ η, for some η ∈ F̂×}.
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Remark. That wσ ' σ implies wπσ ' πσ ⊗ η for some η was proved by Shahidi in

[24].

Proof. If wσ ' σ, then wσ ↪→ πσ|M . Since wσ ⊂ wπσ|M , we know that πσ|M and

wπσ|M have a common constituent. Thus, since πσ|M and wπσ|M are multiplicity free,

Theorem 1.6(d) implies that wπσ ' πσ ⊗ η, for some η ∈ F̂×.

Now suppose that wπσ ' πσ⊗η. Then we know that wσ ' σi for some i. Note that

wπσ|M0
=
⊕
{ji}

r⊗
i=1

ρw(i)jw(i)
. Suppose ρ0 =

r⊗
i=1

ρiji is an irreducible constituent of σ|M0
.

Since wπσ ' πσ⊗ η, we know that πw(i) ' πi⊗ η for each i. Thus, ρw(i)jw(i)
and ρiji

are L-indistinguishable. By Theorem 1.6(b) there is a choice of ki so that ami,ki · ρiji =

ρw(i)jw(i)
. Suppose s = (i w(i) w2(i) . . .w`−1(i)) is a cycle appearing in w. Without loss

of generality, assume s = (1 2 . . . `). Let m be the common value of m1, m2, . . . , m`.

For each 1 ≤ i ≤ `−1, we choose bi = am,ki with the property that bi ·ρiji = ρ(i+1)ji+1
.

Let b` = (b1b2 . . . b`−1)
−1. Then, since the bi commute,

b` · ρ` = (b1 . . . b`−1)
−1ρ`j` = ρ1j1 .

That is, we can take am,k` = b`. Therefore, we can choose ami,ki so that their product

over any cycle s of w is 1, and thus the product of all ami,ki is 1.

Let

b =



am1,k1

am2,k2

. . .
. . .

. . .

amr,kr


.

Then we have just shown that b ∈ M. Thus, by Theorem 1.6(b), b · ρ0 is a constituent

of σ|M0
. On the other hand,

b · ρ0 =

r⊗
i=1

ami,ki · ρiji =

r⊗
i=1

ρw(i)jw(i)
= wρ0.

Thus, wρ0 ⊂ σ and wρ0 ⊂ wσ implies HomM0
(σ, wσ) 6= {0}. Therefore, by multiplicity

one, σ ' wσ. �
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Let

L(πσ) = {η ∈ F̂× | πσ ⊗ η ' wπσ, for some w ∈W}.

Let X(πσ) = {η ∈ F× | πσ ⊗ η ' πσ}. Note that if η, χ ∈ L(πσ), and πσ ⊗ η '

πσ ⊗ χ, then ηχ−1 ∈ X(πσ). Thus, there is a well defined homomorphism ϕ:W (σ) →
L(πσ)/X(πσ) given by ϕ(w) = ηX(πσ), where wπσ ' πσ ⊗ η.

Theorem 2.4. The R-group of σ is given by

R(σ) ' L(πσ)/X(πσ).

Proof. It is enough to show that kerϕ = W ′, where W ′ is the group generated

by reflections in the roots of ∆′. If αij ∈ ∆′, then πi ' πj , so (ij) · πσ ' πσ,

and thus, W ′ ⊆ kerϕ. On the other hand suppose w = s1s2 . . . sk is in kerϕ. Let

si = (i1 i2 . . . ij). Since wπσ ' πσ, πi` ' πi`+1
for 1 ≤ ` ≤ j − 1. Thus, by Corollary

2.2, αi`i`+1
∈ ∆′, for each `. Let αij ij+1

= αi1ij . Then

w =
k∏
i=1

ij∏
`=1

wαi`i`+1
∈W ′.

Thus, kerϕ = W ′, so L(πσ)/X(πσ) 'W (σ)/W ′ ' R.

Remark. The fact that W ′ = {w | wπσ ' πσ} was first shown, with a slightly different

proof, by Shahidi [24, Proposition 1.8].

Remark. If P is the minimal parabolic, then Gelbart and Knapp [7] showed that

L(πσ) ' R(σ). Thus, our result generalizes theirs, as well as those of Keys [16].

Corollary 2.5. If σ and σ′ are L-indistinguishable discrete series representations

of M, then R(σ) = R(σ′).

While Theorem 2.4 describes R as a subgroup of (F×/(F×)n)∧, we desire a more

explicit description of R. Let η ∈ L(πσ). Let Ω(η, i) = {j | πj ' πi ⊗ η}. Let wη(1) =

min Ω(η, 1). For 2 ≤ i ≤ r, let Γ(η, i) = {wη(j) | j < i}. Then we let

wη(i) = min (Ω (η, i) ∩ (Γ (η, i))
c
) .

Clearly wη ∈W.

12



Theorem 2.6. Let η ∈ L(πσ). Then wη is the unique element of R(σ) associated

with η.

Proof. Since, for each i, πwη(i) ' πi ⊗ η, we have wηπσ ' πσ ⊗ η. Thus, wη ∈
W (σ). Suppose αij ∈ ∆′. Then πi ' πj , so Ω(η, i) = Ω(η, j). Since i < j, we have

wη(i) < wη(j), by construction. Thus, wηαij = αwη(i)wη(j) > 0. Therefore, for each

α ∈ ∆′, wηα > 0, and thus wη ∈ R(σ). �

§3 Elliptic representations.

We now use our description of the R-groups of G to explicitly describe the elliptic

tempered spectrum of G. We also describe those tempered representations which are not

elliptic, and are not irreducibly induced from an elliptic representation. We begin with

the multiplicity one result of Howe and Silberger. This result has been extended to an

arbitrary irreducible admissible unitary representation of M [30].

Theorem 3.1 (Howe–Silberger [14]). Let G = SLn(F ), and let P = MN be

an arbitrary parabolic subgroup of G. Suppose σ ∈ E2(M). Then each constituent of

iG,M (σ) appears with multiplicity one. �

Corollary 3.2. For any σ ∈ E2(M), C(σ) ' C[R]. �

Lemma 3.3. Let P = MN be a standard parabolic subgroup of G. Let M̃ be the

Levi subgroup of G̃ with M = M̃ ∩G. Suppose M̃ ' G̃m1
× G̃m2

× . . .× G̃mr . If, for

some i and j,mi 6= mj , then iG,M (σ) can never contain an elliptic constituent.

Proof. By Theorem 1.4 and Corollary 3.2, iG,M (σ) has an elliptic constituent if and

only if there is a w ∈ R so that aw = z. Since mi 6= mj , W (G/A) does not permute

the blocks of M transitively. Thus, there is no w ∈ W (G/A) with aw = z = {0}.

Therefore, for any σ ∈ E2(M), iG,M (σ) cannot contain an elliptic constituent. �

Theorem 3.4. Suppose m1 = m2 = . . . = mr. Let σ ∈ E2(M), and choose πσ ∈
E2(M̃) with πσ|M ⊃ σ. Then the following are equivalent:

13



(a) iG,M (σ) has an elliptic constituent,

(b) every constituent of iG,M (σ) is elliptic,

(c) R(σ) ' Zr.

Proof. Since R is abelian and C(σ) ' C[R], (1) and (2) are equivalent, and both are

equivalent to aw = {0} for some w ∈ R(σ). Since m1 = . . . = mr, W (G/A) ∼= Sr, and

aw = {0} if and only if w is an n-cycle. Up to conjugation by an element of W (G/A0),

we can assume that w = (12 . . . r). Let πσ = π1 ⊗ · · · ⊗ πr, with each πi ∈ E2(G̃m).

From Theorem 2.6, w ∈ R(σ) if and only if there is an η ∈ F̂× such that ηr ∈ X(π1),

and ηj /∈ X(π1) for 1 ≤ j ≤ r − 1, with πi = π1 ⊗ ηi−1. That is,

πσ ' π1 ⊗ (π1 ⊗ η)⊗ (π1 ⊗ η2)⊗ . . .⊗ (π1 ⊗ ηr−1).

Now it is clear that L(πσ)/X(πσ) =< η >, so R(σ) ' Zr. �

Remark. It is not the case that every irreducible tempered representation of G is

either elliptic, or is irreducibly induced from an elliptic representation. This was already

known for G = SL4, with P = B, the Borel subgroup [13]. We will give a description

of all representations of G of this form. We begin with an example which illustrates the

ideas involved. This example is a generalization of the example given in [13] for SL4.

Example 3.5. Let m ≥ 1, and let G = SL4m. Let M̃ ' G̃m × G̃m × G̃m × G̃m. Let

π ∈ E2(M). Suppose that η and χ are distinct characters with η, χ and ηχ /∈ X(π),

but η2, χ2 ∈ X(π). Let

π0 = π ⊗ (π ⊗ η)⊗ (π ⊗ χ)⊗ (π ⊗ ηχ).

Let σ ⊂ π0|M . Then ∆′ = ∅. Note that η corresponds to the permutation (12)(34), χ

to (13)(24), and ηχ to (14)(32). These are the non–trivial elements of R(σ). Note that

aR = {0}, but for each w ∈ R(σ), aw ) {0}. Therefore, by Theorem 1.5, no constituent

of iG,M (σ) is irreducibly induced from an elliptic representation. �

Definition 3.6. Let π ∈ E2(G̃m). Let η1, η2, . . . , η`, ` ≥ 2, be a collection of characters

of F×. Let o(ηi) be the order of ηi modulo X(π). Suppose that

14



(1) ηi11 η
i2
2 . . . ηi`` /∈ X(π) unless η

ij
j ∈ X(π) for each j ;

(2) gcd(o(ηi))
`
i=1 > 1.

Let Ω(π, η1, η2, . . . , η`) =

{
π ⊗ ηi11 ηi22 . . . ηi``

∣∣∣∣∣ 0 ≤ i < o(ηj)

j = 1, . . . `

}
. We call the collection

Ω(π, η1, η2, . . . , η`) a multiple character segment for π.

Definition 3.7. Let G̃ = G̃n. Suppose P̃ = M̃N is a standard parabolic of G̃. A

discrete series representation ρ of M̃ is said to contain a multiple character segment, Ω

for π if, up to permutation of the blocks of M,

ρ ∼= (
⊗
τ∈Ω

τ)⊗ ρ′,

for some ρ′.

Theorem 3.8. Let σ ∈ E2(M), and choose πσ ∈ E2(M̃) with πσ|M ⊃ σ. Then

any constituent of iG,M (σ) is non–elliptic, and is not irreducibly induced from an elliptic

representation if and only if πσ contains a multiple character segment Ω(π, η1, . . . , η`),

with each ηi ∈ L(πσ).

Proof. Suppose πσ ' π1⊗ . . .⊗πr, and {π1, . . . , πk} is a multiple character segment

Ω(π1, η1, . . . , η`). Further suppose that ηi ∈ L(πσ) for each ηi. Then wηi 6= 1, since

for 1 ≤ j ≤ k, πj ⊗ ηi 6' πj . For 1 ≤ j ≤ k there are i1, i2, . . . , i` so that

π1 ⊗ ηi11 ηi22 . . . ηi``
∼= πj .

Thus, there is a w ∈ R(σ), with w(1) = j, for j = 1, 2, . . . , k. Let m denote the

common value of m1, . . . , mk. Then,

aR ⊆





d

d
. . .

d

dk+1

. . .

dr


∣∣∣∣∣ mdk +

r∑
k+1

dimi = 0


.
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We denote the subalgebra on the right by a′. Since gcd(o(ηi)) ≥ 2, there is no character

η so that, for each 2 ≤ j ≤ k, wtη(1) = j for some t. Thus, there is no w ∈ R with

aw ⊂ a′, and thus it is impossible for aw = aR for some w ∈ R. Therefore, by Theorem

1.5, every component of iG,M (σ) is non–elliptic, and cannot be irreducibly induced from

an elliptic representation.

Now suppose that πσ does not contain a multiple character segment with the described

compatibility condition. Suppose that w(i) 6= i for some w ∈ R. Since there is no

compatible multiple character segment, we know there is a character, γi = ηk for some

k, so that πw(i) = πi ⊗ γji for some j. That is, we choose γi ∈ L(X(πσ)) so that the

order of γi modulo X(πσ) is maximal, with the property that πi ⊗ γi 6' πi. Let s(i)

be the cycle of wγi which contains i. Note that if w ∈ R, and w(i) 6= i, then some

power of s(i) appears in W. (This follows from the construction of the elements wη of

R. ) Suppose that, γk 6≡ γji mod (X(πσ) for any 1 ≤ j ≤ o(γi) − 1. Then wγk(i) = i,

and so πi⊗ γk ' πi. Let γi1 , γi2 , . . . , γi` be the distinct classes, modulo X(πσ), among

the characters {γj}. Let w0 = wγi1wγi2 . . . wγi` . By construction, the elements wγij are

disjoint permutations, and w0 ∈ R. Moreover, if there is a w ∈ R with w(i) = k, then

wj0(i) = k for some j. Thus, aw0
= aR. Therefore, by Theorem 1.5, if iG,M (σ) has no

elliptic constituents, then each constituent of iG,M (σ) can be irreducibly induced from

an elliptic representation of some proper Levi subgroup M ′ of G. �

Remark. Suppose σ ∈ E2(M) and all the constituents of π = iG,M (σ) are ellip-

tic. We can parameterize the constituents by the characters R̂ of R. Let πκ be the

constituent which corresponds to κ ∈ R̂. Then Θe
π = 0, so

∑
κ

Θe
πκ

= 0. We would

like to explicitly know this relation between the characters Θe
πκ
. In [13] Herb gives

an explicit description of this character relation when G = Sp2n or SOn. In [10] we

used the same techniques to carry out this program when G = Un. Assem [2] uses his

global character expansions, and a result of Kazhdan [15] to describe this relation when

G = Gn, and n is prime. Shahidi [24] showed that R(σ) ' X(iG̃,M̃ (πσ))/X(πσ). Thus,

L(πσ) = X(iG̃,M̃ (πσ)). Therefore, by extending the results of Kazhdan, one hopes to

describe this relation.
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