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TRANSFER MAPS FOR FIBRATIONS AND DUALIT¥

J.C. Becker and D. H. Gottlieb

1. Introduction

In this paper we will describe a transfer construction for (Hure.wic.z)
fibrations which is a generalization of that for fiber bundles studied in
{4, 5). We suppose given a commutative triangle

where p : E — B is a fibration having fiber F a finite complex and base
B a connected finite dimensional complex. With this data we show that
there is an S-map, which we call a transfer map,

7(f):B"—>E~
having the property that

T

A*(B ") ——— H*E")—— H*(B")

is multiplication by the Lefschetz number A of f':F—F, t‘he restric-
tion of f to the fiber. (Although f' is not unique we allow this abuse of
language since A is independent of the choice of f')

The existence of 7(f) severely restricts the projection map of the
fibration. For example

pe{X:E @ ZIAT>{X; B} ® Z[47]

is a split epimorphism for any (pointed) finite dimensional complex X.
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108 J. C. Becker and D. H. Gottlieb {21

We will show that the boundary map w : 2B — F arising from the
Puppe sequence of the fibration p : E —» B is also restricted by the
transfer. Precisely, we have

(1.1) THEOREM: Assume that F is connected. Then
Aws:{X; QB}, »{X; Fl,
is trivial for any finite dimensional complex X.

An independent method of extending the notion of transfer from
fiber bundles to fibrations is given in [7]. The method which we
describe here is intrinsic and has the advantage that many basic
properties of the transfer are easily derived. A. Dold [9] has also
independently defined the transfer, placing somewhat different restric-
tions on the projection p and fiber preserving map f.

The outline of the paper is as follows. In section 2 we give a
homotopy characterization of the Lefschetz number of a map. Al-
though an elementary fact it is the key point in defining the transfer. In
section 3 we deal with some homotopy properties of ex-spaces and in
section 4 with the duality theory of ex-spaces. This generalization of
Spanier-Whitehead duality is purely formal except for the question of
the existence of dual ex-spaces (theorem 4.2). In sections 5 thru 7 we
define the transfer and establish its basic properties. In section 8 we
prove theorem (1.1) mentioned above and describe some consequences
of the theorem. In section 9 we consider smooth fiber bundles and in
this case we give a more geometric description of the transfer.

2. The Lefschetz number
Suppose that F is a finite complex with base pointand f:F->Fisa

base point preserving map. By the reduced Lefschetz number of f we
mean

A =3 (= 1Y tr [f: H(F)~> H(F)].

Let n:S*— F A F be a duality map in the sense of Spanier [15].
Then F A F is 2s-self dual via the map

BoAp

Ve SE 2 S (FABYWWEFANE)—S (FAF)A(FAF)
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where a{x Ay Ax' Ay )=x"Ay ax ay'. Denote this composite by v
and let 4 : F o - S° be dual to u relative to ». The following lemma
provides a homotopy description of the reduced Lefschetz number of
f. It is the analogue for base point preserving maps of the Lefschetz
fixed point theorem given by Dold {8, theorem (4.1)].

(2.1) Lemma:  The composite S*—"—>FAF—">FaF
—2 > S* has degree A,.

ProoF: We have the following homotopy commutative diagram

2 AF A F)A(F A F)
.2) Sx Gt

‘4“
T L S A (F A )

Let Q denote the rational numbers and choose a generator y €

H.(S°; Q). Let {u,} be a basis for H.(F;Q) and {v,} a basis for

H.(F; Q). Let d(u,) and d(v, ) denote respectively the dimension of u,

and v,. Write

wi(y)= z Qill; A U;

and H
(A v;) = byy

Let A = Ia,-,-l, B = Ib,‘ii, a[ld D = |(_ 1)‘““”85,‘] Whel'e 8,',' iS the
Kronecker symbol. By (2.2) we have
Uap)ely Ay)=(4 A Dsevsly A y)

By expressing each side in terms of the basis elements y A u; 4 v; and
equating coefficients, we obtain the relation A = DABTA. Since A is
non-singular AB” = D.

Now suppose that f () = 2, cutt. We have

Boslfn Dapsy) = @alf n 1)y <E @il A Ui)
= (2 QCully A Ui)

ijk

a;byic Y

(- l)d(“i)sikcik'y

%

2 Dy = Ay

This completes the proof.
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3. Ex-spaces

Consider a trivial fibration p : F—>+*andamap f: F— F, where F is a
finite complex. In this case the transfer map we seek is to be of the
form 7(f):S° - 8° a F*, for large s, and is to have the property that

§*— L 8§ A F —%" , S* have degree A,

To construct 7(f) let w : S* > F* a F be a duality map and take 7(f) to
be composite '

a.f"a1 Lag

S — S F*AF F*AF AF—"

F'aS"— > S* A F*.

Then it is immediate from the preceding lemma that p7(f) has degree
Aq

In order to define 7(f) in general we intend to carry out the above
construction “fiberwise’. This leads naturally to the consideration of
ex-spaces and duality for ex-spaces. In this section we discuss some
aspects of the homotopy theory of ex-spaces and in the following
section we deal with duality proper.

We shall work entirely in the category of compactly generated spaces
[17]. Recall that an ex-space {13} E = (E, B, p, A) consists of maps
p:E— B and A : B - E such that pA = 1. We assume throughout that
B is a CW-complex and E has the homotopy type of a CW-complex.
An ex-map f:E - E’' is one which is both fiber and cross-section
preserving,i.e. p'f = p and fA = A’. The set of ex-homotopy classes of
ex-maps from E to E' is denoted by [E; E'l.

An ex-space E is an ex-fibration if there is a lifting function

I':E xzB'—>E'

with the property that I'(A(b), )= Ao, when o is a path in B
beginning at b. We will also need the notion of a well based ex-space as
in [13]. E is well based if there is a vertical retraction map E X I —
Ex{0luAB)x L

If p:E->B is a map we have an associated ex-space E =
(E, B, p, A) where E is the disjoint union of E and B and p and A are
the obvious maps. Observe that E is well based, and if p: E > B is a
fibration, E is an ex-fibration.

If X is a pointed space we will also use X to denote the ex-space
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(X X B, B, p, A) where p is projection on the second factor and 4 is
the cross section determined by the base point.

The fiberwise reduced product of ex-spaces E and E’ is denoted by
ErgE'. Let r: E Xg E' > E a5 E’ denote the identification map. Be-
cause of the exponential law in the category of compactly generated
spaces, r X l:(E Xg E'YX Y —>(E rg E')X Y is an identification for
any space Y. From this it is easy to see that 7 X 1:(E X E') X Y —
(E ng E'Yy X5 Y is an identification for any space Y over B. With this
last observation it is easy to prove the following.

(3.1) LemMma: If E and E' are well based so is E ng E'. If E and E'
are ex-fibrations so is E ng E'.

(3.2) Tueorem: (Comparison theorem): Let E and E' be ex-
fibrations and suppose g : E — E' is such that its restriction to the fiber
over b, g, : F, = F}, is an n-equivalence, b € B. Let X be a well based
ex-space. Then g.:[X: E]—[X: E'} is injective if X is n-coconnected
and surjective if X is (n + 1)-coconnected.

The proof is the same as the proof given for bundles in {1; theorem
3.3]. For other versions of the comparison theorem, see Eggar {l1;
Theorem 3.9] and James [14; Theorem 3.2].

(3.3) CoroLLARY: Suppose that E and E' are well based ex-
fibrations and g:E —E’ is such that g,:F, - F, is a homotopy
equivalence, b € B. Then g is an ex-homotopy equivalence.

Given E =(E, B, p, A) let 2z (E) denote the space of loopsa: [ E
such that o{I) C F, forsome b € B,and o(0) = o (1) = A(b). We have

D(p):Q(E)->B and 02(4):B—Q:(E)

by Q(p)o)=p(a () and 2(A)b) = A(b) = A(b)* — the constant loop
at A(b). If E is an ex-fibration so is 2s(E) as is easily checked.
There is the suspension map

3.4) 0:[E,E'1>{S'As E;S'rnp E']

by f — 1 A f. By a standard argument involving the comparison theorem
and the loop space 2:(S' A E'), we obtain the following suspension
theorem (c.f. [1; Theorem 3.14] or [14; Theorem 4.3]).
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(3.5) TueoreM: Suppose that E' is an ex-fibration such that each
fiber F,. is (n — 1)-connected. Let E be well based. Then o is injective if
E is (2n — 1)-coconnected and surjective if E is 2n-coconnected.

Let
(3.6) {E; E'Ye = LIMJS*** A E; S* A E']

with the natural abelian group structure. The cone over E is C(E) =
I rg E with O the base point of L

Suppose that A is a subcomplex of B. Let E, =p '(A)UA(B)
regarded as an ex-space of B. Then, as in [13], we have an exact
sequence

->{EUC(E:);E'}e »{E; E'}s >{Es; E'}s —>- -

Let E/E, be the quotient of E obtained by identifying each fiber of
E. to its base point and let ¢ : E U C(E,)— E/E, denote the natural
map. Note that if E is well based so are Ea, E/E. and E U C(E.).

(3.7) LemmMma: If E and E' are ex-fibrations and E is well based then
c*:[E[E.; E'1>[E U C(E,); E'] is bijective.

A proof is given in section 10. Now if E and E’' meet the
requirements of the lemma we may replace {E U C(E,); E'} in the
above sequence by {E/E.; E'} via ¢* and so obtain an exact sequence

3.8) -+ >{E[Es;E'}¢ >{E;E'} >{Es;E'}a—>- -+

4. Duality

In this section we will outline Spanier-Whitehead duality theory in
the category of ex-spaces. Some aspects of this theory have been dealt
with by K. Tsuchida [18). We restrict ourselves to ex-spaces which are
well based ex-fibrations having base B a finite dimensional complex
and each fiber homotopy equivalent to a finite complex. Briefly, we will
refer to such ex-spaces as ex-fibrations.

An ex-map u:S°X B —E agE is a duality map if for each b € B
the restricted map u, : S° — F, A F, is a duality map in the usual sense.

7N Transfer maps for fibrations and duality 113

Given such a duality map and ex-fibrations X and Y we have
4.1 DX AE; Y= {X; Y n E}eus
defined by seanding f:S** A XA E—->S8“A Y to
Skrat A X > S A X A ST
S AXAENE—L2 58S AYAE
and
4.2) D* {EAX; Y} = {X;En Y}us
by sending f:S** A EAX—>S“AY to

1A al ~
- S9N EAEAX —m—

Sk+q+s A X

inf

EArS*“AErX EAS*AY—S“AEnY.

(4.3) Lemma: D, and D* are isomorphisms.

This follows from the corresponding fact for pointed spaces if all the
ex-spaces involved are products. The proof in general is by induction
over the skeleta of B using the exact sequence (3.8). The argument is
standard and will be omitted.

If v:S* x B— X a X is a second duality map we have, as in the case
of pointed spaces, an isomorphism

(4.4) D(w, v):{E. X}, »{X; E},
defined so as to make the following diagram commutative

D@ v)

{E;X}q——){X;E}q

(4.5) \D /

{S*xB, X a E}ge.

In particular, f: E - X is dual to g : X - E relative to u and v if and
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only if the diagram
S*xXB—2 S EAE
o | -
XanX—5,XAE
is stably homotopy commutative.

(4.7) Tueorem: If E is an ex-fibration there is an integer s, an
ex-fibration E, and a duality map 1 :S*xB —>E A E.

A proof is given in section 11.

S. Transfer

Let # denote the category of fibrations p : E — B such that B is a
finite dimensional complex and each fiber is homotopy equivalent to a
finite complex. We consider commutative triangles

E-SE

\’B/

where p : E —» B is in % We will construct for such a triangle and for A
a subcomplex of B a transfer map, which is an S-map

(5.1) 7(f):B/A - E|E..
Here E. = p "'(A).
Consider the ex-space E, the disjoint union of E and B. Since E is an

ex-fibration in the sense of section 4, there is an ex-fibration E and a
duality map -

w:S*xXB->EAE

Analogous to the situation for pointed spaces (see section 2), E » E is
canonically 2s-self dual. Let

G:EAE—->S*xB
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be dual to u. We have

. fHrat

S*XB—SEAE EnEAE——"_3sEnS*—>S*AE

which takes S°* X A UsoX B into S* X E, U soX B.
Identifying these subspaces to a point, the above map yields

7(f):S*AB[A—>S° A E/E..
We will show now that the S-homotopy class of 7(f) is well defined.
Firstly, if u is replaced by a suspension, this has the effect of replacing

7(f) by its suspension. Suppose now that

(5.2) \ /
B

i =1,2,are given and h : E,— E, is a fiber homotopy equivalence such
that Af, = f,h. Let

w:S*XB ->EnE, i=12,

be duality maps and let k:E,— E, be dual to A Then k is an
ex-homotopy equivalence and we have commutativity relations

E, E rE
l S*xXB
/\

S x B\
where the second triangle is obtained by dualizing the first. The
following diagram is then commutative.

><—>

Wipal = LU

E——

E A E.n E A
S*x B l ‘ fint
(lfz)Al
/\ /\

upz

[Tj>



116 J. C. Becker and D. H. Gottlieb {10]

Therefore hr(f) = 7(f.). Taking h to be the identity we see that 7(f)
does not depend on the choice of duality map and moreover, 7(f)
depends only on the fiber homotopy class of f.

We also established the following functorial property

(5.3) With the data (5.2) if h : E,— E, is a fiber homotopy equivalence
such that hf, is fiber homotopic to fh then hr(f) = 7(f,).
Now suppose we are given

E—SE

B
and a map g : X — B. There is the pullback diagram

o E-'L,F
Il; and the induced triangle \{‘X/

(5.4) We have gr(f) = r(f)g.
This is easily checked.
We may form the sum and product of the triangles in (5.2) obtaining

fi+fs f1%f

E,+E,———> E,+E, E.XE,———— E, X E,

y /‘Pz \l\x"- /sz

where + denotes disjoint union.

(5.5) ’T(fl +f2) = T(fl) A\ T(fz):(BllAl) \ (BZIAZ)'-)(EIIEAl) A (EZIEAz)

(5.6) T(fiX ) =7)r7(f2): (B.JA) A (B2/As) > (E\JEa) A (EJ/ELy).

These properties follow from standard properties of duality maps as
generalized to ex-spaces.

[11] ) Transfer maps for fibrations and duality 117

B— B
B

7(1): B/A - B/A is the identity map.

(5.7) For the triangle

6. Products

We consider now the multiplicative properties of the cohomology
homomorphism induced by the transfer. We have a commutative
diagram

E EXE BXE
6.1) ’
B ‘ BXB

where d is the diagonal map. From (5.3), (5.4), (5.6) and (5.7) we obtain,
for subcomplexes A and C of B, a cummutative diagram

ElEscc—2—> E|Es A E|Ec 2> B|A n E/Ec

6.2) 0 Larh

B/AUC BlA A B|C

Let M be a ring spectrum and N an M-module as in {19]. From the
commutativity of the above diagram we obtain the formulas

(6.3) T p*(x)Uy)=x Ur({)* (),
x EM*(BJ/A),y EN*(E/Ec).

6.4) p+(r()ex)Ny)=x N7(f)*(y),
' x EN.(BIAUC),y E M (E/Ec).
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Now consider the triangle

F—' L F

%

(Lf*yal

In the diagram

S L S (FYAF (FYA(FYA F—5 5 (F)r S*

(FYA E £ S:

the composite (1 A @)(1, f*) A Du represents 7(f). Hence, by lemma
(2.1) and the commutativity of the diagram we have (identifying pt.”
with §°.

(6.5) pr(f): S°— S° has degree A(f*) = A(f)— the Lefschetz number
of f.

We can now establish the fundamental property of the transfer.
Consider

with p:E—> B in %. Let f, : F, - F, denote the restriction of f to the
fiber over b € B and let A denote the Lefschetz number of f,. Let

H{ ;T) denote singular theory with coefficients in the abelian group
r.

(6.6) TueoreM: If B is connected the composite

H*B/A;T)—2— H*E/|E.; T)—L> A*BIA;T)

is multiplication by A.

[13] Transfer maps for fibrations and duality 119

Proor: Consider the inclusion
F.—>>E
o »
{b}—>>B
By (6.5), for L€ HY(B™; Z)
Er(fy*p*) = r(£,)*pi(l) = A.
Since i¥: I-'I°{B+; Z)— H°({b}Y": Z) is an isomorphism,
D) =r()*p*(1)=4

Applying (6.3), we have for x € H¥*(B[A; TI),

T((*p*(x)=7()*P*(x)U 1)
x Ur(f)*(1) = Ax.

I

7. The retraction property
In this section we compare the transfer for a fibration with that of a

retract up to homotopy.
Suppose that p: E— B and q:D — B are fibrations in % and

D—A>E;>D

are fiber preserving maps such that pA =1 over the identity. Then if
f:D — D is a fiber preserving map we have triangles
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(7.1) TueoreM: At(f)=1(Afp): B/A > E|E.
Proor: Let

‘LIZSSXB_)D_/\DA
p:S*xB->EnE

be duality maps. Let A : E — D be dual to A : D - E relative to . and
2, SO that

(72) luz ()I Al
A tnX A

E—"SE

[esf]

is commutative. Consider the diagram

— A (a.pHat — - 2 A =

(7.3) DAaD——"" 5 DaDaD—% 5sDArS*

* Kal Katat

= A (A.fp)al = e LY

S*XB EAD—"" SsEADAD

A
3]

1AX 1agak 1Adg Kal

EnE &Yt LB FAE (A)

(A Afp) Al 1aXpal
14y

The commutativity of the triangle (A) follows from the commutativity
of the diagram
FaX
IAX &2
' A
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where the square is the dual of (7.2). The remaining commutativity

relations in (7.3) are easily checked. The theorem follows by comparing
the two outside paths in (7.3) from S°x B to E A S*.

8. Proof of theorem (1.1)

We begin with an observation concerning the transfer map when the
base space is a suspension. Suppose that X is a finite dimensional
complex with base point x, and we are given

‘E-\& - /é
S(X)
with p :E > 8(X)in % Let F denote the fiber over x, and choose a
base point ¢, € F. Let

8.1 A:S(X)—~E|F

be defined by A(e>™ a x)=I(eo, o(t,x)) (1), where I" is a lifting
function and o (¢, x): I - S(X) is the path

o{t, x)(A)=e> ™ x

Let A denote the Lefschetz number of f F — F, the restriction of f
to F.

(8.2) LEMmMA: Assume that F is connected. Then AA is stably
homotopic to 7(f): S(X)— E[F.

Proor: Let C(X) = I A X denote the reduced cone of X (with 0 the
base point of I) and consider

C(X)xF—>E

™ ]

C(X)—2Z— $(X)



122 J.C. Becker and D. H. Gottlieb [16]

where p is the natural identification and

Yt A x,y)=T(y, o, x)Q).

Then ¢ is a homotopy equivalence on each fiber and the restriction of '

¢ to the fiber over x, is the identity. It follows that

C(X)xF—2 5 C(X)xF

S

E — ' L F

is fiber homotopy commutative. Therefore, by (5.3), (5.4) and (5.6)
7 =dr(Ax )=y A 7(f')): C(X)IX —> E[F, where 7(f'): S°—
F~ is associated with the trivial triangle

F- " .F

*
Let io: S°— F* by io{+ 1) = e and io(— 1) = +. Since F is connected it is
clear from the behaviour of the homomorphism in singular homology

induced by 7(f') that 7(f') = Ai,. Note that

C(X)/X n F*—2> E[F

(8.3) '[l nio=io ‘[a

CX)X —— S(X)
is commutative. Therefore
(o = ¢ A 7(f)) = ¥(1 A Aid) = Adp.
Since p:C(X)/ X - S(X) is a homeomorphism, 7(f)= AA and the

proof is complete.
Now let

(8.4) X /

[17] Transfer maps for fibrations and duality 123

be given where the fiber F of p : E — B is a finite complex and B is a
complex (not necessarily finite dimeunsional). Choose base points
bo€E B and e, € F = p~'(b,) and let w:02B - F denote the boundary
map arising from the fibration p : E - B.

If X is a finite dimensional complex with base point and g : X - 2B
is a base point preserving map let

E_' JE

(8.5) \ /

S(X)

be induced by S(X) ——"> S(2B) — > B where € is the adjoint of
the identity map. We will show now that

EIF—~ 5 S(F)
(8.6) * S
S(X)—= S(QB)

is commutative, where A is as in (8.1) and k is from the Puppe
sequence of the cofibration F — E.

We have
ElIF—— | S(F)
" ) sw St
8.7 C(X)X FIX X F—~ S(X x F) S@B)
jo S} Sz}
CXOIX—— S(X)

where k in each case is from the appropriate Puppe sequence and j, is
the inclusion y — (¥, €,). The commutativity of the right hand triangle is
by direct calculation. The commutativity of (8.6) now follows from the
commutativity of (8.3) and (8.7).



124 J.C.Beckerand D. H. Gottlieb [18]
We are now in a position to prove the theorem of the introduction.
(1.1) THEOREM: Assume that F is connected. Then

Awy:{X; OB}, —»{X; Flq

is trivial for any finite dimensional complex X.

ProoF: 0B has the homotopy type of a CW-complex Y. If ¢ : Y >
0B is a homotopy equivalence it is sufficient, to prove the theorem, to
show that Aw({g}) =0 if X is a finite dimensional subcomplex of Y
and g : X — 0B is the inclusion followed by ¢. By the commutativity of
(8.6) and Lemma (8.2)

Aw({g]) = A{kA} = {kr(f)}-

We have a commutative diagram

S(X) —— S(X)
where ¢, ¢’, ¢", and j are quotient maps. Since {kj}=0 we have
{kr(f)c} = c*{kr(f)} = 0. Since ¢* is monomorphic, {k7(f)} = 0 and the
proof is complete.

ReMARKS: (1) The map w frequently appears in other forms, hence
theorem (1.1) applies for (a) coset maps p : G — G/H, or more generally
for (b) maps @ :M — X which factor through the evaluation map
H(X)— X where #(X) is the space of homotopy equivalences of X,
or for (¢) fibre inclusions of principal bundles. Theorem (1.1) states that
Awy = 0and Aw™* =0 for all homology and cohomology theories on the
category of finite dimensional complexes. This is an extension of two
results of [7], wherein theorem (1.1) was proved only for singular
cohomology and for homotopy groups in the stable range. See also [5].

(8.8) COROLLARY: Let a € m,(S°"). Then [a, t2,]1=0 implies that
2A{a} =0, where {a} denotes the stable homotopy element represented by

{19} Transfer maps for fibrations and duality 125

a and [a,1,,] is the Whitehead product of a with the generator of
WZH(SZH)-

Proor: The fact that [a,t:]=0 implies there is a map
F:8"x 8™ - §* such that F restricted to * X §°" is the identity and F
restricted to S' X * represents «. Taking adjoints, we see that a factors
through o : M — S where M is the space of degree one maps on S,
and w is the evaluation map given by evaluation at the base point. Thus
(1.1) may be applied to a in view of the remark. In this case
A =x(S§™)=2.

Let G be a compact connected Lie group, H a closed subgroup of G,
and p:G - G/H the projection.

(8.9) CoroLLARY: As an S-map x(G/H)p:G - G/[H is trivial,
where x(G|H) is the Euler characteristic of G/H.

In particular, if N is the normalizer of a maximal torus in G then
p:G— G/N is stably trivial since y(G/N)=1 [6, 12]. On the other
hand, it is interesting to note that p.:m(G)—- 7 (G/N) is an
isomorphism for k > 2.

9. Smooth fiber bundies

In the case of a smooth fiber bundle p : E — B a more geometric
description can be given for the transfer associated with a fiber
preserving map. We assume that B and F are closed manifolds.

Let p:E— B XxR* be a fiber preserving embedding. Its normal
bundle B is inverse to the bundle « of tangents along the fiber and we
have an isomorphism a6 8 = R* associated with the embedding. Let

c:B*AS*>E

denote the Pontryagin-Thom map of this trivialization.
The diagonal inclusion into the fiber square, d : E - E’, has normal
bundle « so that we have

=18)

¢ (E)——— E*®F=FE"r §*

where 7,: E*-> E is projection onto the first factor.
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If f:E—E is a fiber preserving map let
(tf):EBe(EZ)";“”

send v, to (e, f(e), v.).
(9.1) ProrosITION: 7(f):B*—E" is represented by

a’n

B*AS® E*?

(E)"® —— > E.

First observe that the S-map determined by c’(fl?_f)c is independent
of the choice of embedding p and of the tabular neighborhood maps
used in constructing ¢ and c’'.

Now, for p : E = B x R*, let B denote the normal bundle, let S(8)
denote the total space of the unit sphere bundle, and let E denote the
quotient of D(g8) obtained by identifying each fiber of S(8) to a point.
We regard E as an ex-space of B by p: E—>B and A:B - E where
p(lv.)=p(e) and A(p(e)) =[v)], where v.€ S(B). Then p is the
projection of a fiber bundle whose fiber over b is the Thom space F3,
where v, is the normal bundle of the embedding F, »{b} X R".

Choose a fiber preserving tubular neighborhood D(B)CB X R*® and
let 8:B x S* - E denote the associated Pontryagin-Thom map. Let

9.2) p:BxS* >EaE

be the composite B XS*—>E —2>E arz E, where d(v.)=e Av..
By Atiyah’s duality theorem {1} u is a duality map.

The diagonal embedding E — E Xz D{(B) has normal bundle « P B =
E X R*. Choosing a fiber preserving tubular neighborhood E x D* C
E x5 D(B), we obtain

(9.3) 0 :EngE—>E rsS°.

Let 0":E az E—BxS* denote 6' followed by the projection
E Ap Ss d B X Ss-

(9.4) LemMa: 0" is dual to p.

[21] Transfer maps for fibrations and duality 127
Proor: We must show that

BXS*AS* ——>(E rsE)as (E A E)

ol 10"
(E ng E)A S°

is homotopy commutative. Since isotopic embeddings determine
homotopic duality maps, the duality map determined by

E @ B XR* XR*®
is homotopic to that determined by
&.p)
E——— B XR*XR"
The former duality map is u A 1 whereas, using the factorisation

d

E E*—"2 S BXR*XR",

the latter is easily seen to be homotopic to (1 A 8")v.
Proposition (9.1) is now a consequence of the following commuta-
tive diagram.

BxS —"—>EnE @net EngErg B2 5 FEAS®

\ p o v

~ g — A

Ef —— — S EAE

o~
c [C9% 3]

B*AS® E*® (E)™® < L E*pSe.

Here d'(e'av.)=ene' av., gw.)=f(e)av, and h(e' Av.)=
(¢, e’, v.). The unlabeled arrows denote the natural identification map.
The commutativity of the upper right hand triangle follows from the
fact that 4@ = ¢".

ReMark It follows from Proposition (9.1) and the retraction
property (7.1) that the two methods of constructing the transfer which
are outlined in [3], do in fact lead to the same map.



128 J.C.Beckerand D. H. Gottlieb [22]
10. Proof of (3.7)

Suppose that E=(E,B,p,A) and E'=(E',B’,p’,A") are ex-
spaces. If h: E—>E’ and f: B — B' are such that p'h = fp and hA =
A'f we will say that h is a map over f. If E' is an ex-fibration then we
obtain from the special nature of the lifting function for E’ the
following covering homotopy property.

(10.1) Given F:B xI—->B' and a map h:E — E' over F, there is
H:EXI->E' such that Hyo=h and H, is a map over F,, 0=t = 1.

Suppose that E is an ex-space of B and A CB is a subcomplex. As
before, let ¢ : E U C(EA,)— E[E4 denote the natural map. Let A : B X
I- B x{1}U A x I be a retraction map and let F: B X [ —» B denote A
followed by projection onto B.

(10.2) LemmMmAa: Suppose that E is an ex-fibration. There is
q:ElE, > EUC(E,) over F, and homotopies H:E[E, x> E|E,
and K:EUC(E,)XI— E UC(E4.) such that

(a) Hy=cq, H =1, and H, is over F, 0=t =<1.

(b) Ko=gqc, K,=1, and K, is over F,, 0=t < 1.

Proor: Consider

Ex{}—— E x 1

px1 px1

BXI—"— 5 BXL

Applying (10.1) for the ex-fibration E X I there is M:EXI—>E X[
suchthat M, =i, and M, is over A, 0 < ¢ < 1. Then we actually have

M:EXI->EX{I}UE, XL
Let q' denote
E—" 5 Ex{1}JUE, x I — E U C(E,).

Since M(E,) CE4 X {0} we have q'(E,)CA(B). Let q:E/E, >E U
C(E.) denote the collapse of g'. Then ¢q is a map over F,.
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To construct H, the map
ExI—Y 5 Ex{1l}UE,xI——> EUC(Es)——> E|E,

has a quotient H:E/E, X [ - E/E, which is the desired map.
To construct K let N: E xI - E UC(E,) denote the composite

EXI—" 5 EX{l}UEsxXI——> E UC(EJ).

Define K:E UC(EA)XI—-E UC(E.) by K(e,t)=N{(e, t),if e €E,
and K([e,s]. t}=sxN(e t), if ¢ € E,, where s *[e’, t] =[e', st] for
[e',t]1€ C(E,). This completes the proof.

We will now prove (3.7) which asserts that

c*:[E/Es; E')>[E UC(Ea); E']

is bijective provided E and E' are ex-fibrations.
To show that ¢* is onto let §: E U C(E,)— E’ be an ex-map and
constder

E[E, x{0}—2 > E'

pxl P’

BXI—- 5B

There is N:E/EaXI—-E' over F such that No=0q. Let ¢ =
N.:E|E, — E’'. Then i is an ex-map and we will show that ¢ *({¢/]) =
{6]. We have homotopies

EUC(E,))XI —" 5 EJE. xI— > E'
over F, and
EUC(E)XI—— E UC(E.)——> E'
also over F. Then

(K™ e (N(c X1)): EUC(E\)XI—>E'

is a homotopy from 6 to yc over F'o F. By a standard argument
involving the covering homotopy property (10.1) we see that 0 is
ex-homotopic to .
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To show that ¢ * is one-one let o, i1 E/E4 — E' be such that ¢ is
ex-homotopic to ¢ by p: E UC(EL.)XI— E' say. We have

ElE. x(Ix{0}UixI)—2— E'

px1xl '

BXIX] —~ B

where F(b,t,A)=F(b,A) and Q(e t,0)=p(qle), t), Q(e,0,1)=
YoH(e, 1), and Q{e, 1,A)= ¢ H(e,\). Thereisthen R: E[/E, X I X >
E' over F which extends Q. Then S:E/E,xI—->E' by S(e t)=
R(e, t, 1) is an ex-homotopy from s, to .

11. Proof of (4.7)

Let E =(E, B, p, A) be an ex-fibration in the sense of section 4. Let
S (E) denote the unreduced fiberwise suspension of E and
2 (p):S(E)—>B the projection. There is the “south pole” cross
section 8 : B » X (E) given by 8(b) =[e, 0] where p(e) = b and we let
2o(E)=(Z(E),B,2(p),8). It is easy to to check that Z,(E) is an
ex-fibration as in section 4. The quotient map 7 :Z,.(E)—>S'A E is an
ex-map and is a homotopy equivalence on each fiber. Hence by the
comparison theorem (3.2), 7 is an ex-homotopy equivalence. Note that
if p:E — B is a fibration with fiber a finite complex (not necessarily
equipped with a cross section) we may still form X, (E) which is an
ex-fibration.

Now let E be an ex-fibration. To construct an ex-fibration £ and a
duality map

u:S*xXB>EArE

we proceed by induction over the skeleta of B. Let B have dimension n
and let A denote the (n —1)-skeleton of B. Assume there is an
ex-fibration D(E|A), with fiber F say, and a duality map

(1L1) @:8°xA—>E|A A D(E|A).

Let B be obtained from A by adjoining cells via A;: S"'—> A, j €],
and let A;:D" - B denote the characteristic map. Let ¢,: F x D™ -
A*(E) be an ex-fiber homotopy equivalence and ¢ : F X $"™' - A ¥(E)
its restriction.
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We have a dualit& map

(11.2) 7;:8° X §" ' = A%(E) A A(D(E|A))

induced by w. Choose a duality map

(11.3) v:8 XS > (FxS" ) a(Fx8"

and let ¢;: A*(D(E|A))—> F x $"~! be dual to ¢; relative to 7; and .
Then ¢; is an ex-homotopy equivalence and we have a homotopy
commutative triangle.

AT(E) A A(D(E|A))

/’

(11.4) S*xS! o b7l

\(F X Sy A (F « §"1)

Let 6,: F x S"'— D(E]A) denote the composite
Fx§*'—21 5 A%(D(E|A) —— D(E|4),

and let X' be obtained by adjoining, for each j € J, F x D" to D(E|A)
via 8. We have an ex-space (X', B,p’',A") where p’ and A’ are the
obvious maps. Moreover, by results of Dold and Thom [10 (2.2) and
(2.10)], p': X' > B is a quasifibration. We replace p' by a fibration in
the usual way obtaining a commutative square

X— 5 X

(11.5) o] a » |4

B—l—>B,

where X ={x,0)EX'XB'p'(x)=0a(0)}, p(x,o)=0(1), A(b)=
(A'(b), b*) where b* denotes the constant path at b, and alx)=
(x, p'(x)*).

Now p:X — B is a fibration with each fiber p~'(b) of the weak
homotopy type of F. Since X (being homotopy equivalent to X') has
the homotopy type of a CW-complex, it follows from [16 Proposition
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0] that p~'(b) has the homotopy type of a CW-complex, hence is

homotopy equivalent to F.
Let E =3,(X). Then E is an ex-fibration as in section 4. We will’
show now that there is a duality map

p:S*""xB->EAE.
From (11.4) we obtain the following homotopy commutative diagram.

S'AAEE) A AX(D(E|A)— E A S'aA D(E|A)——2" E 7 S, (D(E|A))

l1an;

(11.6) Sstix §t i aln b

Kby o 246;)

lav

S'A(E XS YA (FE XS )>(F xS Ha (S A F)x 8™

1am—l

——— (FxS" ) a (S (F)x 8"
Let o' denote the duality map

S'x A —""5S'A E|A A D(EJA)—> E|A » §' A D(EJA)

1aZS(x)

— T L E|A A 3o (D(E|A)) E|A 2 EJA,

and let v’ denote the duality map

Serix §m s SUA(Fx S ) a (xS

_Q(F XS A S A F)x 8" )T S (F X S™ Y A (So (F) x S™Y)
We have from (11.6) a homotopy commutative diagram

A X Ss+l

Ss+1X Sn~l E A E"-

\:" /\11‘%‘ A X (af;)

(FXS" MHA(Zo (Fyx S

It follows now that w’'(A; X 1) has an extension over S*"'x D", for
each j €J, and therefore w' has an extension w:S*"'X B - E A E,
which is clearly a duality map.
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