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COMPACT GROUP ACTIONS AND MAPS
INTO K (7,1)-SPACES
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DANIEL H. GOTTLIEB', KYUNG B. LEE> AND MURAD OZAYDIN

ABSTRACT. Let G act on an aspherical manifold M. If G is a compact Lie group
acting effectively and homotopically trivially then G must be abelian. We prove a
much more general form of this result, thus extending results of Donnelly and
Schultz. Our method gives us a splitting result for torus actions complementing a
result of Conner and Raymond. We also generalize a theorem of Schoen and Yau on
homotopy equivariance.

Introduction. A closed manifold N is aspherical if its universal covering N is
contractible. A lot of information has been obtained by Conner and Raymond [5-7]
regarding group actions on such manifolds. One of their results is that a connected
compact Lie group acting effectively on N is abelian. On the other hand a classical
theorem of Bieberbach states that any finite group (abelian or not) can act freely on
some torus—the simplest examples of aspherical manifolds. Any element of a
connected group acting on N defines a homeomorphism of N which is homotopic
(isotopic) to the identity. Such actions are called homotopically trivial. We show that
a finite (more generally, a compact Lie) group acting effectively and homotopically
trivially on an aspherical manifold is abelian.

Actually we work with a much larger class of manifolds. Recently Donnelly and
Schultz [8] showed that most symmetry properties of aspherical manifolds are also
enjoyed by a hyperaspherical manifold, a closed oriented manifold equipped with a
degree-1 map into an oriented aspherical manifold. We consider what we call
K-manifolds, a larger class still retaining such properties. A closed oriented m-mani-
fold M is called a K-manifold if there is a torsion-free group T together with a map f:
N — K(T',1) so that f*: H™(T'; Z) » H™(M; Z) is onto.

The homotopy type of an aspherical manifold is determined by its fundamental
group. Therefore it is natural that their symmetry properties are reflected largely in
the automorphisms of the fundamental group. More accurately, when the action of a
group G fixes a base point x in M there is an induced action of G on m (M, x).
When the base point is not necessarily fixed, this “action” is determined only up to
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conjugation in 7,(M). That is, there is a homomorphism ¢ of G into the group of
outer automorphisms of #;(M). If M is a K-manifold and if G preserves the kernel
of f4: m(M) — T, then we consider the composition of ¥ with the natural map
Out(7) — Out(T). The necessary algebraic data is summarized in diagram (2.1). Our
main theorem in §2 states that the kernel of this homomorphism is an abelian
subgroup of the compact Lie group G (Theorem 2.5). Now it immediately follows
that any compact Lie group that acts effectively and homotopically trivially on a
K-manifold is abelian.

The proof is based on a key lemma (Lemma 2.4) showing that a certain centralizer
is torsion free and the group theoretical fact (Corollary 1.3) that a torsion-free
central extension of an abelian group by a finite group is necessarily abelian.

Our method allows us to show a splitting theorem of a K-manifold: Let M be a
K-manifold via f: M — K(T,1), where I' has homologically injective center (for
example, K(T', 1) = closed manifold with nonpositive sectional curvature). Then any
effective torus action (T*, M) is homologically injective. Consequently, M has a
finite covering which splits into T* X (a closed manifold).

Finally, we have a result on hyperaspherical manifolds: Let f: M — N be a
degree-1 map, where N is a “nice” aspherical manifold (e.g. flat Riemannian,
infranilmanifold, etc.). Let a finite group G act effectively on M. Then there is an
effective G action on N for which f is homotopy equivariant if and only if G
preserves ker f ,: mM — mN. This generalizes a theorem of Schoen and Yau [16].
We have not only deleted the smoothness condition of (G, M), but also expanded
the class of N.

1. Basic group theory. In this section we shall prove that a torsion-free central
extension of a group by a finite group is abelian (see Corollary 1.3 below). Actually
we prove a stronger fact which is pleasant in its own right. We use nonhomogeneous
cocycles to express a group extension; see [14, Chapter IV] for example.

LEMMA 1.1. Let 0 » C » E — G — 1 be a central extension with G a finite group
of order n. Then ¢: E — C, defined by @(x) = x", is a homomorphism.

PROOF. Let f: G X G — C be a 2-cocycle giving rise to the extension E. In other

words, foralla, 8,y € G, ,
(Sf)(a’ :B’ Y) =f(Bs Y) _f(aﬁa Y) +f(0£, BY) _f(a’ B) = 0.

E is C X G with the group operation

for all @, b € C and all @, 8 € G. We may choose f so that f(a,D)=f(1,a)=0.
Define g: G = C by g(a) = L, f(a, t). Itis easily checked that, for all a, 8 € G,

(8g)(a, B) = g(B) — g(aB) + g(a) = nf(a, B).
If we define ¢: E > C by ¢(a,a) = na + g(a), ¢ is seen to be a homomorphism.
To show that ¢(a, @) = (a, a)" we see that, by computation,

(a,a)” = | na + if(a,ai),l .
i=1

Hence we will be done when we demonstrate g(a) = L7, f(a, a').
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Putting o' = Bin 8f = 0 gives, for ally € G,
f(a,a) —f(a, aiy) =f(ai, 'Y) _f(ai-+—1, Y).

Summing over 1 < i < m = order of a, the right-hand side disappears, i.e., for all
Y €G,

||M§

f(a a') = Zf(a a'y).

i=1

When y ranges over coset representatives for the subgroup generated by a in G, any
t € G can be expressed uniquely as 1 = a’y (1 < i < m). Therefore

L fla,n)=% Zf(aav)-Zf(a o). O

teG y i=1

The next corollary was shown, by a geometric argument, in [11, Fact 2] when C is
finitely generated and torsion free (i.e., C = Z*).

COROLLARY 1.2. Let 0 > C —» E - G — 1 be a central extension with G finite.
Then t(E), the elements of finite order in E, form a fully invariant subgroup. Moreover,
t(E) is finite when t(C) is finite.

PROOF. Any endomorphism of E maps ¢(E) into itself, so #(E) is fully invariant.
Since t(E) = ¢ }(#(C)) (¢ as in Lemma 1.1), ¢(E) is a subgroup. The quotient
t(E)/t(C) is finite. Therefore, ¢( E) is finite when #(C)is. O

The following corollary will be crucial in our future arguments. It is a trivial
consequence of Lemma 1.1. It was already known [11] when C = Z*.

COROLLARY 1.3. Let 0 > C > E > G — 1 be a central extension with E torsion
free and G finite. Then E and hence G is abelian.

PrOOF. When FE is torsion free, ¢(x) = x" of Lemma 1.1 is injective. Hence E is
isomorphic to a subgroup of the abelian group C. O

REMARKS. If 0 > C - E - G — 1 is a central extension, the Lyndon spectral
sequence (with C coefficients) gives the exact sequence [14, p. 354, (10.6)]

8
0 —» Hom(G, C) » Hom(E, C) » Hom(C, C) —» H*(G; C).

The boundary map & takes the identity map 1. € Hom(C, C) to [E], the class
representing the extension E. If m[ E] = 0, then there is a ¢ € Hom(E, C) such that
®|o = m. When G is torsion and C is torsion free, Hom(G, C) = 0; hence, ¢ is
unique. It is not true in general that p(x) = x" forallx € E. (If E = C X G we can
take m = 1 and clearly that does not work. Even when x™ € C for all x € E,
x — x™ may not be a homomorphism. Take E = {1, +i, +j, +k}, the quatern-
ions, C = {£1}, and m = 2.) When G is finite of order n, n[ E] = 0. If C is torsion
free, p(x)" = @(x") = (x")" (x" and p(x) both lie in the torsion-free abelian group
C) implies ¢(x) = x". This gives an alternate proof of Corollary 1.3. .
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In the next section, whenever we claim that a compact Lie group is abelian we will
give a proof only for a finite group. The following fact makes this possible. It should
be well known to experts, but we could not locate a reference, so we provide an
argument.

Fact 1.4. If all the finite subgroups of a compact Lie group G are abelian then G is
abelian.

PRrOOF. First we show that G, the connected component of G, is a torus. Let T”
be a maximal torus (of rank r), N(T") its nomalizer in G, and W the Weyl group
with n = [W|. For any natural number &, (Z,,)" = {t € T": t*" = 1} is a character-
istic subgroup of T". Hence the standard action of W on T restricts to an action on
(Z,,)", giving the exact sequence of W-modules

r kn
0-(Z,,) »T ->T -0.
In cohomology, we have the exact sequence
i k
H2X(W; (Z,,)") = H*(W; T") > HX(W; T").

Now H(W; —) is annihilated by n = |W|, so i, is onto. Let i, [W,] = [N(T")];
where [W,] is in H*(W; (Z,,)"). Then

0 - (Zi,)" - Wi - W -1
N\ ) I =
1 - T - NT) - W - 1

is a commutative diagram. Since W, is isomorphic to a finite subgroup of G, it is
abelian. Then W acts trivially on (Z,,)" (the action is induced by conjugation in
W,). But U, (Z,,)" is dense in T’, hence W acts trivially on T". The action of the
Weyl group is always effective, so W must be trivial. Therefore G, = T" (see, e.g., [3,
Proposition 20.2}).

Next consider the exact sequence

15 Gy=T > G- F-1,

where F is finite, say of order m. Choose [ F,] in H*(F; (Z,,,)") as above, i.e., [F,]is
the preimage of [G] € H*(F; T"). Again F, is abelian since it is isomorphic to a
finite subgroup of G, and G is abelian because U, F, is densein G. O

Note that a compact abelian Lie group G is isomorphic to a direct product of a
torus (the connected component of the identity) with a finite abelian group. That is,
the exact sequence 1 » T — G —» F — 1 splits. To get the isomorphism F into G
one modifies a preimage of a generator a of F using the fact that T is a divisible
group.

2. Group actions on K-manifolds. In this section we prove our main results on
homotopically trivial group actions and derive some applications. We prove these
results for a class of manifolds called K-manifolds. This concept generalizes the
notion of hyperaspherical (a fortiori, aspherical) manifold; our results imply that
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many of the basic results concerning group actions on aspherical and hyper-
aspherical manifolds are still valid for K-manifolds.

Let M be a connected manifold and let G be a subgroup of the group of
homeomorphisms of M. If p: M — M is a universal covering, we shall denote by G*
all homeomorphisms of M covering those in G. The group G* fits into the exact
sequence

1> a(M)->G*5>G 1.

If G has a fixed point m in M, then the action of G can be lifted to M, i.e., there is a
splitting 6: G — G* and G* is a semidirect product (see [4, Chapter I, §9; 7, 15] for
details). In this case there is an induced action of G on (M, m). Let 7 = = (M)
and Out(7) be the group of outer automorphisms of 7. In general we have the
homomorphism ¢ of G into Out(«). For a normal subgroup A of 7 let M = M /A be
the corresponding cover of M. If G consists of all homeomorphism of M covering
those in G, the map G —» G may not be onto. When the subgroup A is normal in G*,
however, G = G*/A and hence G — G is onto. Conjugation in G* gives a homo-
morphism from G* into Aut(w, A), the automorphisms of « leaving A invariant.
There are natural homomorphisms from Aut(sw, A) into Aut(w/A) and from
Out(7, A) (the image of Aut(w, A) in Out(«)) into Out(7/A). We have an exact
commutative diagram

1 = "Cla/A) = Cap(n/A) - Key/ - 1

\) ) )
21 1 - /A - G*/A - G - 1
\) ) Vv

1 - Im(w/A) - Aut(m/A) - Out(r/A) - 1

where C(7/A) is the center of 7 /A, Cjn sa(m/A) is the centralizer of (the subgroup)
7/A in G*/A, and ¢’ is the composition G — Out(w, A) = Out(7/A). The exact-
ness of the top row is a standard diagram chase. In the proof of the following
theorem we will need this in the special case A = {1}.

THEOREM 2.2. Let M be a manifold having the homotopy type of a finite K(,1). If
a compact Lie group G acts freely and homotopically trivially on M, then G is abelian.

The editor has kindly brought to our attention that this result was known to Frank
Raymond, and it is contained in a handwritten manuscript, which is a joint work
with Walter Neumann.

Proor. It suffices to consider finite G by Fact 1.4. Since the order of a torsion
element in G* = 7,(M/G*) must divide 1 = x(M) [9, Corollary 3], G* is torsion
free. As G acts homotopically trivially, G = Ker ¥. In the central extension

1-C(7)—> Cou(m)> G- 1,

Cg+() is torsion free, hence by Corollary 1.3, G is abelian. O
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The assumptions of freeness and homotopic triviality of the action are necessary
because any finite group can act freely on some torus and any compact Lie group
can act effectively (and homotopically trivially) on some finite-dimensional represen-
tation space. When we consider a closed manifold M we can relax the hypothesis
quite a bit. We need the following

DErFINITIONS 2.3. We shall say that an action (of G on M) is inner on =« if :
G — Out(w) is trivial (7 = 7 (M)). In particular, homotopically trivial actions are
inner, e.g., any action of a connected group G. An action is said to preserve a normal
subgroup A of = if A is normal in G*. An inner action will preserve any normal
subgroup and a characteristic subgroup will be preserved under any action. We say
that an action is inner on w/A if the action preserves A and the homomorphism ¢’:
G — Out(w/A) is trivial.

We shall call a closed oriented manifold M a K-manifold if there is a torsion-free
group I' and a map f: M — K(T,1) such that f*: H"(K(T,1); Z) > H™(M; Z) is
onto, where m = dim M. We may assume that f,: # — T is onto since f factors (up
to homotopy) through K(f4(7),1). The hyperaspherical manifolds of [8] are K-
manifolds with K (T, 1) a closed oriented manifold and f a degree-1 map.

The property of being a K-manifold is intrinsic, i.e., independent of f and T'. Let
t(7) be the smallest normal subgroup of 7 containing all torsion. Define ¢%+1(7) =
pl(t(w/t*(m))) inductively, where p,: # — m/t*(xr) is the natural projection. Let
t®(m) = U, t*(m). Then 7 /t*() is torsion free, and any homomorphism # — T' (T
torsion free) factors through 7 /(7). Thus M is a K-manifold if and only if

H™(w/t*(7); Z) > H"(M; Z)

is onto. Since ¢* () is a characteristic subgroup of 7, any G action preserves ¢ ().
The next lemma will be our main tool for most of our results. It is a generalization
of [11, Lemma 1]. Our proof is based on ideas of [8].

LEMMA 2.4. If G acts on a K-manifold M preserving A = Ker f , then Cg ;p(7/A)
is torsion free.

PROOF. Assume Cg. ,o(7/A) has torsion. Then there is an element a of prime
order q. Let H be the cyclic subgroup of G generated by the image of a (H is
nontrivial because I' = /A is torsion free). Hence 1 > T » H*/A s H - 1
splits. Since « commutes with I', H* /A = T' X H. So we can factor the map 7 —» T
as w > H* > H*/A =T X H - T. The covering map p: M — M induces a ho-
meomorphism M/H* — M/H. Now, by a theorem of Armstrong [1], m,(M/H*) =
H* /N, where N is the smallest normal subgroup generated by the isotropy sub-
groups { H*}, x € M. 1t is easily checked that p: H* — H induces isomorphisms
H* = H,,, for all x € M. Hence H} are all finite. Then H* — T factors through
H*/N = @,(M/H). The commutative triangle of groups

T - m(M/H)

v
T
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gives rise to a homotopy commutative triangle of spaces

M - M/H
i /
K(T,1)

because M/H has the homotopy type of a finite complex [8, Theorem 1.2].
Therefore,

H™(M; Z) « H™(M/H;1Z)
~1 7
H™(K(T,1); Z)

is commutative. But H™(M/H; Z) —» H™(M; Z) is not onto [8, Lemma 2.5],
contradicting the fact that f* is onto (by the definition of a K-manifold). O

THEOREM 2.5. Let M be a K-manifold and let G be a compact Lie group acting
effectively on M with an inner action on T. Then G is abelian.

PROOF. Again it suffices to consider finite G by Fact 1.4. Since the action is inner
on I, y’ is trivial by definition, hence G = Ker y’. The top row of (2.1), 1 - C(T")
= Cgsyp(I') = G = 1 is a central extension with Cg. ,(T') torsion free (Lemma
2.4) and G finite. Therefore G is abelian by Corollary 1.3. O

COROLLARY 2.6. Only an abelian compact Lie group can act effectively and
homotopically trivially on a hyperaspherical manifold. O

The following is also an immediate consequence of Lemma 2.4 in conjunction
with (2.1). It is due to Borel, Conner and Raymond [7)] for aspherical M and to
Donnelly and Schultz [8] for hyperaspherical M.

PROPOSITION 2.7. Let G be a finite group acting effectively on a K-manifold M.

(i) If the action of G lifts to an action on M (e.g., when G has a fixed point), then
G — Aut(w) is injective. If G preserves A, then G — Aut(w) = Aut(w/A) is injec-
tive.

(ii) If 7 has trivial center, then y: G — Out(w) is injective. If G preserves A and T
has no center, then y’: G — Out(T) is injective.

PROOF. In either case if A is not given we can take it to be t*(w). For (i),
G — Aut(T') is injective because the kernel lies in the torsion-free group Cg. /a(D).
To see (ii) observe that the inclusion kery or kery’ in G factors through the
torsion-free Cg. /4 (T') ((2.1) and Lemma 2.4). O

For a K-manifold M, if ' can be chosen to be abelian, then M is hypertoral [17].
Then f4: 7 — T factors through the abelianization of =, H,(M; Z). Also, since T is
torsion free, f, factors through the free part of H;(M; Z). This is the universal I’
corresponding to 7 /t*(#) in the nonabelian case. Such M can also be characterized
by the fact that the fundamental class in cohomology is a product of 1-dimensional
classes or by admitting a degree-1 map to a torus. In particular, oriented surfaces
with genus g > 1 are K-manifolds with I’ = Z28, When T is the free part of
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H,(M; Z), the induced G action on T' is equivalent to the homology action of G
(naturality of =, (M) —» H,(M; Z)). We can talk about the induced action on T', for
abelian T, because Aut(I') = Out(I'). The action of G on H,(M; Q) is completely
determined by the action of G on the free part of H,(M; Z). We have the following
[17,2.2,2.3]

COROLLARY 2.8. Let G be a finite group acting effectively on the hypertoral manifold
M. Assume either

(i) the Euler-Poincaré characteristic x (M) is relatively prime to the order of G, or

(ii) the cohomology algebra H*(M; Q) is generated by H'(M; Q) and the Euler-
Poincaré characteristic x(M) is nonzero.

Then the action of G on H;(M; Q) is faithful.

PROOF. The argument is based on showing any element a of G having prime order
q has a fixed point, and then using Proposition 2.7(i). The action of « on M cannot
be free in (i) because p| |G| implies p + x(M). In (ii), if the action of « on H,(M; Q)
is trivial then the action on H*(M; Q) is trivial. Hence the Lefschetz number
A(a) = x(M) # 0 and « has a fixed point by the Lefschetz fixed point theorem.
Now, by Proposition 2.7, a acts nontrivially on I', which can be chosen to be the free
part of H,(M; Z). Therefore the action on H,(M; Q) is faithful. O

ReMARKS. The conclusion of Corollary 2.8 can also be stated as: Let ¢y be a
homeomorphism of finite order of M. If ¢ induces identity on the first homology
then y is identity. When this holds for H,(M; Q) it also holds for H,(M; Z,), n > 2.
This follows from a slight generalization of a theorem of Minkowski: The natural
homomorphism GL(m,Z) - GL(m,Z,) has torsion-free kernel for n > 2 (the proof
is elementary). When M is a closed oriented surface of genus greater than one the
hypothesis of Corollary 2.8 (ii) is satisfied. This is a classical result for conformal
automorphisms of a Riemann surface. It is due to Hurwitz for rational coefficients
and to Serre for Z -coefficients, n > 2 (see [18, 14.5]).

The following was known for finite groups and tori [17].

COROLLARY 2.9. Let G be a compact Lie group acting effectively on the hypertoral
manifold M. If the action of G on H|(M; Q) is trivial, then G must act freely on M.

PROOF. If G acts trivially on H,(M; Q), then it acts trivially on the free part of
H,(M; Z). Let us choose I to be the free part of H;(M: Z). Since T’ is abelian and
the action is inner on I', the top and the middle rows of (2.1) are identical. Hence
G*/A is Cg. /5(T'). If there was a nontrivial isotropy group G,, we could lift its
action to M. That would mean that G* /A has a nontrivial torsion, contradicting
Lemma24. O

3. Splitting via a torus action, homotopy equivariant actions. We prove two facts
using the previous results. Firstly, any effective torus action on a K-manifold over I’
which has a homologically injective center is homologically injective. This im-
mediately implies a splitting theorem. Secondly, let f: M — N be a degree-1 map
where N is a “nice” manifold (see Example 3.4). Then any effective finite action on
M induces an action on N, so that fis homotopy equivariant, provided that f satisfies
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a necessary condition. This is a topological version of [16, Theorem 11].

Let G be a connected compact Lie group acting effectively on a manifold M.
Picking a base point m in M, consider the evaluation (orbit) map ev: G — M given
by ev(z) = tm for all t € G. It is well known that im(ev,) is a central subgroup of
m (M, m) [S]. The action of G can be lifted to a covering M=M /A for some
subgroup A of m(M, m), if and only if im(ev,) C A [5, §4]. Since G is connected,
the action is homotopically trivial. If M is a K-manifold then, by Theorem 2.5, G is
abelian, hence a torus. The action of G on M is injective (see [5] for aspherical M and
[8] for rationally hyperaspherical M); that is,

PROPOSITION 3.1. Let T be a torus acting effectively on a K-manifold M. Then the
composition f yevy: m(T) — & = T is injective.

PROOF. Since any nonzero element in 7,(7) = Z* can be represented by a
monomorphism S! - 7, we need only consider an effective circle action. Let us
obtain a contradiction by assuming m,(S') — T is trivial. If A = ker f, then this S!
action can be lifted to an action on M = M/A by the paragraph above. Now the
usual topology of S' is the same as the one coming from the compact-open topology.
Hence the kernel of the induced homomorphism S* — Aut(T") (see (2.1)) is closed
in S'. Since the action is homotopically trivial, this map actually factors through
Inn(T'). Being a homomorphic image of the finitely generated group 7,(M), Inn(T)
is countable. Hence S' — Inn(T’) is trivial. Then S! < Co+/a(T'), contradicting
Lemma24. O

The inclusion of a maximal torus into a nonabelian compact connected Lie group
never induces a monomorphism at the fundamental group level. Hence Proposition
3.1 gives an alternate argument for the fact that only tori can act effectively on
K-manifolds. Another implication is that all the isotropy subgroups must be finite,
since otherwise 7, (T') — ;( M) would not be injective.

A central subgroup of 7 is said to be homologically injective if it maps injectively
into H,(7; Z) via m > H (7; Z). For example the fundamental group of a closed
smooth manifold with nonpositive sectional curvature has a homologically injective
center by a theorem of Wolf. A torus action is homologically injective if im(ev,)
(central in 7) is homologically injective. Homological injectiveness of an action has a
very strong implication as shown in the following result of Conner and Raymond.

PROPOSITION 3.2 [6]. Let M be a closed manifold with an effective torus action. This
action is homologically injective if and only if M has a finite covering T X M’ for some
closed manifold M'. Furthermore, the deck transformation group is ( finite) abelian,
acting diagonally and freely as translations on the first factor.

A torus action on a K-manifold M with T abelian is always homologically
injective. Then the action is free and M splits as a product M/T X T [17]. This does
not hold for all K-manifolds, not even for aspherical manifolds, but we have

THEOREM 3.3. Let M be a K-manifold, where T' has homologically injective center.
Then any T (torus) action on M is homologically injective. Consequently M = T X
M’ /A, where M’ is a closed manifold and A is a finite abelian group acting diagonally
and freely as translations on T.
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Vi S
PRrOOF. Since 7 (T) - m(M) — T is a monomorphism into the center of I' and
the center of I" is homologically injective, the commutative diagram

m(T) - "7'1(M) - H|(M;Z)
fed l
r - H(T;Z)

implies m,(T) = = (M) — H(M,Z) is injective. O

We will now consider a finite group acting effectively on a hyperaspherical
manifold M. Thus we have a degree-1 map f: M - N = K(I',1). Can we find an
effective G action on N such that f is a G-map? This should not be possible for
arbitrary f. If we only require f to be homotopically equivariant, i.e., for any g in G,

g
M - M
il i
N - N

is homotopy commutative, then the answer is affirmative in many instances (possibly
all). When the action is smooth and N is a flat Riemannian manifold, this was
known [16, Theorem 13; 12, Theorem 2.1] under the necessary condition that G
preserves A = Ker f,. We will remove the smoothness condition and generalize this
to a larger class of N.

When the action of G preserves A = Ker f,, we have the abstract kernel [14, p.
124] y’: G —» Ouy(T'), where I' = 7;(N). An extension 1 > T' > E—> G- 1 is
called admissible if Ci(T') (the centralizer of I' in E) is torsion free. A necessary
algebraic requirement for ¥’ to admit an effective geometric realization (an effective
G action on N inducing ¢’) is the existence of an admissible extension [11]. Let us
say that a closed aspherical manifold N is “nice” if the following holds: A finite
abstract kernel y': G — Out(7;(N)) can be realized geometrically if and only if ¢’
admits an admissible extension. No aspherical manifold which is not “nice” is
known at present time.

ExAMPLES 3.4. The “model” K(T', 1)-manifolds constructed in [13] for torsion-free
virtually poly-Z groups I' are “nice” [13, Theorem 6.4]. This contains all compact
flat Riemannian manifolds and more generally all infranilmanifolds (almost flat
manifolds). All classical Seifert manifolds in dimension 3, Seifert fiber spaces over a
locally symmetric space are “nice”. More generally all Seifert fiber spaces over
“nice” manifolds are “nice” [13]. All hyperbolic manifolds are “nice” by Mostow’s
Rigidity theorem in'dimension > 3, and by [10] in dimension 2.

THEOREM 3.5. Let M be a hyperaspherical manifold with f: M — N, where N is
“nice”. Let a finite group G act effectively on M. There is an effective G action on N for
which f is homotopy equivariant if and only if G preserves Ker f .

PrOOF. By Lemma 24, 1 > T - G*/A - G - 1 is admissible (T’ = m(N),
A = Kerf,). Since N is “nice”, this extension can be geometrically realized. The
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commutativity of
1 - m(M) - G* - G - 1

! ) =
1 > m(N) -» G*A - G - 1

guarantees the homotopy equivariance of f. O

ADDED IN PROOF. Examples of K-manifolds which are not hyperaspherical will
appear in a paper by K. B. Lee and F. Raymond entitled Manifolds on which only
tori can act.
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