5/7/99

D. Gottlieb

MA 174

FINAL EXAM

Name _____

We will use the following three vector fields in this exam. The position vector field:

$$\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}.$$

The Coulomb vector field:

$$\mathbf{E} = rac{\mathbf{r}}{\|\mathbf{r}\|^3} = rac{1}{(\sqrt{x^2 + y^2 + z^2})^3} \ (x\mathbf{i} + y\mathbf{j} + z\mathbf{k}).$$

The rotation vector field:

$$\mathbf{R} = -y\mathbf{i} + x\mathbf{j} + 0\mathbf{k}.$$

- (5 pts) a) For suitable ${\bf F}$ and region D, state the divergence theorem.
- (5 pts) b) For suitable ${\bf F}$ and surface S, state Stokes' theorem.

ERRATA

- 2. Recall \mathbf{r} is the position vector field.
- (5 pts) e) If the volume enclosed by a closed surface S equals 3π , what is the flux $\iint_S \mathbf{r} \cdot \mathbf{n} d\sigma$ equal to?
- (5 pts) f) Show there is no closed surface S whose normal vector field **n** is always perpendicular to **r**.

An alternative problem for 5c), worth five points:

Find three real numbers whose sum is 9 and the sum of whose squares is as small as possible.

3) Recall $\mathbf{E} := \frac{\mathbf{r}}{\|\mathbf{r}\|^3}$ is the coulomb vector field.

- (10 pts) a) Show $\boldsymbol{\nabla} \cdot \mathbf{E} = 0$.
- (10 pts) b) Show $\nabla\left(\frac{-1}{r}\right) = \frac{\mathbf{r}}{r^3} = \mathbf{E}$ where $r = \sqrt{x^2 + y^2 + z^2} = \|\mathbf{r}\|$.
 - (5 pts) c) Find the flux $\iint_{S} \mathbf{E} \cdot \mathbf{n} d\sigma$ for a closed surface S not containing **0**.
 - (5 pts) d) Find the flux for S containing **0**.
 - (5 pts) e) Find $\int_{C} \mathbf{E} \cdot \mathbf{n} ds$ where C is a circle in the x-y plane about the origin with radius 1.

4. Suppose
$$\mathbf{E}_1 = \frac{(\mathbf{r} - \mathbf{a})}{\|\mathbf{r} - \mathbf{a}\|^3}$$
 where $\mathbf{a} = (1, 0, 0)$ and let $\mathbf{E}_2 = \frac{\mathbf{r} - \mathbf{b}}{\|\mathbf{r} - \mathbf{b}\|^3}$ where $\mathbf{b} = (0, 2, 0)$.

- (0 pts) a) True or False: The fact that the divergence of **E** is zero leads you to believe the same for \mathbf{E}_1 and the fact that the flux of **E** through a surface *S* depends only on whether **0** is enclosed in *S* or not enclosed in *S* leads you to believe the flux of \mathbf{E}_1 through *S* only depends on whether **a** is enclosed by *S* or not.
- (0 pts) b) True or False: Your calculus skills are such that you could verify the mathematical statements in part a).
- (5 pts) c) Evaluate $\nabla \cdot (\mathbf{E} + \mathbf{E}_1 + \mathbf{E}_2)$.
- (5 pts) d) What is the flux of $\mathbf{E} + \mathbf{E}_1 + \mathbf{E}_2$ through a sphere S of radius 1/2 centered at (0,0,1)?

- (5 pts) a) Show $\nabla \cdot (a\mathbf{F}_1 + b\mathbf{F}_2) = a\nabla \cdot \mathbf{F}_1 + b\nabla \cdot \mathbf{F}_2$ where \mathbf{F}_1 and \mathbf{F}_2 are plane vector fields and a and b are constants.
- (5 pts) b) Show $\nabla(f \cdot g) = g(\nabla f) + f(\nabla g)$ where f and g are differentiable functions of two variables x and y.
- (5 pts) c) Suppose F(x, y) = f(x, y)g(x, y) and suppose that F(x, y) has a maximum at (1, 2). If g(x, y) has a minimum at (1, 2) and if f has no critical point at (1, 2), what must g(1, 2) equal?
- (5 pts) d) Evaluate $\nabla \cdot (\mathbf{r} + 3\mathbf{E})$.

(10 pts) 6. Suppose the surface S is bounded by the curves C_1, C_2 and C_3 . Suppose $\nabla \times \mathbf{F} = \mathbf{0}$ on S and suppose the circulations $\int_{C_1} \mathbf{F} \cdot d\mathbf{r} = 1$ and $\int_{C_2} \mathbf{F} \cdot d\mathbf{r} = -2$ where the integrals are taken in the

direction of the arrows in the diagram.

What is
$$\int_{C_3} \mathbf{F} \cdot d\mathbf{r}$$
?

- (10 pts) a) Find the work done by moving a particle of mass 1 around a circle of radius 1 around the origin of the x-y plane opposite to the direction of the force field $\mathbf{R} = -y\mathbf{i} + x\mathbf{j}$.
- (5 pts) b) Calculate the curl, $\nabla \times \mathbf{R}$, of \mathbf{R} and then use Stokes' theorem to get a circulation integral around the boundary of a bounded region A in the x-y plane which gives the area of A.

8.
$$\int_{1}^{4} \int_{0}^{\sqrt{x}} \frac{3}{2} e^{y/\sqrt{x}} dy dx.$$

- (10 pts) a) Sketch the region of integration.
- (10 pts) b) Reverse the order of integration.

- (10 pts) a) What is the unit outward pointing normal vector at the (1, 1, 1) point on the ellipsoid S given by $x^2 + 2y^2 + 3z^2 = 6$?
- (10 pts) b) What is the equation of the tangent plane to S at (1, 1, 1)?
- (10 pts) c) S intersects the sphere $(x-1)^2 + y^2 + z^2 = 2$ (of radius $\sqrt{2}$ and center at (1,0,0)), in a curve C. Show (1,1,1) is on this curve C.
- (10 pts) d) What is the unit tangent **T** to C at (1, 1, 1)?

- (10 pts) a) Consider the set of all vectors \mathbf{x} in space so that $\|\mathbf{x} \mathbf{a}\| = b$ where \mathbf{a} is a constant vector and b is a positive number. What quadric surface does this set represent. Can you describe the roles of \mathbf{a} and \mathbf{b} ?
 - OR
- (alt. 10 pts) b) Where does the line t(1, -1, 1) + (1, 1, 1) intersect the ellipsoid $3x^2 + 4y^2 + 2z^2 = 10$?