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Abstract

Most of the work being done to unify General Relativity and Quantum Mechanics

tries to represent General Relativity in the Quantum Mechanics language. We propose

here an approach to represent Quantum Mechanics in the language of Relativity. In order

to introduce discretness into the language of Relativity we consider the classical invarients

of homotopy theory, in particular the index of a vector field. We insist that these invariants

be treated as physical quantities, independent of choices of observers and conventions.

Following this prescription we found an argument that magnetic monopoles should not

exist. The argument centers on the fact that the magnetic field depends on the choice

of orientation of space–time. The idea of orientation does not seem to exist in Quantum

Mechanics. We suggest that it should and that the parity operator P really should be

reflection followed by change of orientation. We give extended philosophical arguments

that the index should play an important role in Mathematics, and hence Physics, based on

a novel definition of Mathematics and the meaning of the underlying unity of Mathematics.
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1. Introduction

There are two successful theories in Physics: Quantum Mechanics and General Rel-

ativity. There is considerable work being done to unify them. Mostly, this work tries

to represent Relativity as a form of Quantum Mechanics. To a mathematician, however,

General Relativity seems to make Physics well-defined and clear, [O],[S–W],[P], whereas

Quantum Mechanics is full of tricks and arguments with coordinate systems and formal

manipulations,[Su]. So why not try to make Quantum Mechanics look like Relativity ?

To do this, we want some way of introducing discreteness and quantum numbers into

smooth and continuous space-time. In Quantum Mechanics this is done by eigenvalues

and eigenvectors and symmetries. We believe that in Relativity, one can do it by using the

homotopy invariants of Algebraic Topology. A good way to proceed is to insist that any

homotopy invariant which arises in a physical way should be treated as a physical object.

The easiest invariant and most flexible to use is the index of a vector field. Hence the

Index Principle.

Principle of Invariance of Index. The index of any “physical” vector field is

invariant under changes of coordinates and orientation of space–time. If the index is

undefined, it signals either radiation or unrealistic physical hypotheses.

Consequence. Every “physical” pseudo–vector field has index zero or the index is

undefined.

Now the magnetic vector field
−→
B is a pseudo–vector field. That means if we change

the orientation of space,
−→
B changes to −−→B . Now Ind(−V ) = (−1)n Ind(V ) where n is

the dimension of the manifold on which V is defined. Thus Ind(−−→B ) = (−1)3 Ind(
−→
B ).

So either Ind(
−→
B ) is not defined or Ind(

−→
B ) = 0. Now a magnetic monopole will give rise

to a
−→
B with index ±1. As this is inconsistent with the Invariance of Index Principle, we

predict that magnetic monopoles do not exist.

Magnetic monopoles were predicted by Dirac based on an alteration of Maxwell’s equa-

tions which made them more symmetric, [F]. Despite Dirac’s ideas, magnetic monopoles
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have not been found in nature. More recently magnetic monopoles were predicted using

the topological nontriviality of certain principal bundles, [B]. Our non-existence argument

is also based on Topology, but our argument is more direct. Note that it does not de-

pend on Maxwell’s equations. It is a new kind of argument for Physics and so we devote

considerable philosophical discussion in sections 2 and 3 as to why it is reasonable.

In section 2, we discuss why the index of vector fields should play an important role in

Mathematics. This involves the question of the underlying unity of Mathematics. In section

3, methods of applying the index in Mathematics are discussed. In section 4, the definition

and key properties of the index are listed. In section 5, natural extension of the ideas of

index and vector fields to fibre bundles are made. In section 6, we give a more sophisticated

argument that magnetic monopoles do not exist using the electromagnetic field tensor F .

We discuss aspects of the argument. In particular we suggest that the parity operator in

Quantum Mechanics should involve a reversal of handedness. We suggest that all parity

violating experiments involve an inappropriate change of handedness. We also introduce a

fibre bundle of space–time which clarifies what we mean by the index undefined. Finally

in section 7, we give other suggestions of applications of the Index Principle to Physics.

It is a pleasure to thank Solomon Gartenhaus for numerous discussions and suggestions.

2. The Unity of Mathematics

We take the following definition of Mathematics:

Definition. Mathematics is the study of well–defined concepts.

Now well–defined concepts are creations of the human mind. And most of those cre-

ations can be quite arbitrary. There is no limit to the well–defined imagination. So if

one accepts the definition that Mathematics is the study of the well–defined, then how can

Mathematics have an underlying unity? Yet it is a fact that many savants see a underlying

unity in Mathematics, so the key question to consider is:

Question. Why does Mathematics appear to have an underlying unity?
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If mathematical unity really exists then it is reasonable to hope that there are a few

basic principles which explain the occurrence of those phenomena which persuade us to

believe that Mathematics is indeed unified; just as the various phenomena of Physics seem

to be explained by a few fundamental laws. If we can discover these principles it would

give us great insight into the development of Mathematics and perhaps even insight into

Physics.

Now what things produce the appearance of an underlying unity in Mathematics?

Mathematics appears to be unified when a concept, such as the Euler characteristic, ap-

pears over and over in interesting results; or an idea, such as that of a group, is involved

in many different fields and is used in Science to predict or make phenomena precise; or

an equation, like De Moivre’s formula

eiθ = cos θ + i sin θ

yields numerous interesting relations among important concepts in several fields in a me-

chanical way.

Thus the appearance of underlying unity comes from the ubiquity of certain concepts

and objects, such as the numbers π and e and concepts such as groups and rings, and

invariants such as the Euler characteristic and eigenvalues, which continually appear in

striking relationships and in diverse fields of Mathematics and Physics. We use the word

broad to describe these concepts.

Compare broad concepts with deep concepts. The depth of an idea seems to be a func-

tion of time. As our understanding of a field increases, deep concepts become elementary

concepts, deep theorems are transformed into definitions and so on. But something broad,

like the Euler characteristic, remains broad, or becomes broader as time goes on. The

relationships a broad concept has with other concepts are forever.

The Function Principle. Any concept which arises from a simple construction of

functions will appear over and over again throughout Mathematics.

We assert the principle that function is one of the broadest of all mathematical con-

cepts, and any concept or theorem derived in a natural way from that of functions must
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itself be broad. We will use this principle to assert that the underlying unity of Mathe-

matics at least partly stems from the breadth of the concept of function. We will show

how the breadth of category and functor and equivalence and e and π and de Moivre’s

formula and groups and rings and Euler Characteristic all follow from this principle. We

will subject this principle to the rigorous test of a scientific theory: It must predict new

broad concepts. We make such predictions and report on evidence that the predictions are

correct.

The concept of a function as a mapping f :X → Y from a source set X to a target set

Y did not develop until the Twentieth Century. The modern concept of a function did not

even begin to emerge until the middle ages. The beginnings of Physics should have given

a great impetus to the notion of function, since the measurements of the initial conditions

of an experiment and the final results gives implicitly a function from the initial states

of an experiment to the final outcomes; but historians say that the early physicists and

mathematicians never thought this way. Soon thereafter calculus was invented. For many

years afterwards functions were thought to be always given by some algebraic expression.

Slowly the concept of a function of a mapping grew. Cantor’s set theory gave the notion

a good impulse but the modern notion was adopted only in the Twentieth Century. See

[ML] for a good account of these ideas.

The careful definition of function is necessary so that the definition of the composition

of two functions can be defined. Thus fog is only defined when the target of g is the

source of f . This composition is associative: (fog)oh = fo(goh) and f composed with the

identity of either the source or the target is f again. We call a set of functions a category

if it is closed under compositions and contains the identity functions of all the sources and

targets.

Category was first defined by S. Eilenberg and S. MacLane and was employed by

Eilenberg and N. Steenrod in the 1940’s to give homology theory its functorial character.

Category theory became a subject in its own right, it’s practitioners joyfully noting that

almost every branch of Mathematics could be organized as a category. The usual definition

of category is merely an abstraction of functions closed under composition. The functions
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are abstracted into things called morphisms and composition becomes an operation on

sets of morphisms satisfying exactly the same properties that functions and composition

satisfy. Most mathematicians think of categories as very abstract things and are surprised

to find they come from such a homely source as functions closed under composition.

A functor is a function whose source and domain are categories and which preserves

composition. That is, if F is the functor, then F (fog) = F (f)oF (g). This definition also

is abstracted and one says category and functor in the same breath.

Now consider the question: What statements can be made about a function f which

would make sense in every possible category? There are basically only four statements

since the only functions known to exist in every category are the identity functions. We

can say that f is an identity, or that f is a retraction by which we mean that there is a

function g so that fog is an identity, or that f is a cross–section by which we mean that

there is a function h so that hof is an identity, or finally that f is an equivalence by which

we mean that f is both a retraction and a cross–section. In the case of equivalence the

function h must equal the function g and it is called the inverse of f and it is unique.

Retraction and cross–section induce a partial ordering of the sources and targets of a

category, hereafter called the objects of the category. Equivalences induce an equivalence

relation on the objects and give us the means of making precise the notion that two

mathematical structures are the same.

Now consider the self equivalences of some object X in a category of functions. Since X

is both the source and the target, composition is always defined for any pair of functions,

as are inverses. Thus we have a group. The definition of a group in general is just

an abstraction, where the functions become undefined elements and composition is the

undefined operation which satisfies the group laws of associativity and existence of identity

and inverse, these laws being the relations that equivalences satisfy. The notion of functor

restricted to a group becomes that of homomorphism. The equivalences in the category of

groups and homomorphisms are called isomorphisms.

The concept of groups arose in the solution of polynomial equations, with the first
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ideas due to Lagrange in the late eighteenth century, continuing through Abel to Galois.

Felix Klein proposed that Geometry should be viewed as arising from groups of symmetries

in 1875. Poincare proposed that the equations of Physics should be invariant under the

correct symmetry groups around 1900. Since then groups have played an increasingly

important role in Mathematics and in Physics. The increasing appearance of this broad

concept must have fed the feeling of the underlying unity of Mathematics. Now we see

how naturally it follows from the Function Principle.

If we consider a set of functions S from a fixed object X into a group G, we can

induce a group structure on S by defining the multiplication of two functions f and g to

be f ∗ g where f ∗ g(a) = f(a) · g(a). Here a runs through all the elements in X and

“·” is the group multiplication in G. This multiplication can be easily shown to satisfy

the laws of group multiplication. The same idea applied to maps into the Real Numbers

or the Complex Numbers gives rise to addition and multiplication on functions. These

satisfy properties which are abstracted into the concepts of abelian rings. If we consider

the set of self homomorphisms of abelian groups and use composition and addition of

functions, we get an important example of a non–commutative ring. The natural functors

for rings should be ring homomorphisms. In the case of a ring of functions into the Real

or Complex numbers we note that a ring homomorphism h fixes the constant maps. If we

consider all functions which fix the constants and preserve the addition, we get a category

of functions from rings to rings; that is, these functions are closed under composition. We

call these functions linear transformations. They contain the ring homomorphisms as a

subset. Study the equivalences of this category. We obtain the concepts of vector spaces

and linear transformations after the usual abstraction.

Now we consider a category of homomorphisms of abelian groups. We ask the same

question which gave us equivalence and groups, namely: What statements can be made

about a homomorphism f which would make sense in every possible category of abelian

groups? Now between every possible abelian group there is the trivial homomorphism

0:A→ B which carries all of A onto the identity of B. Also we have for every integer N

the homomorphism from A to itself which adds every element to itself N times, that is
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multiplication by N .

Thus for any homomorphism h:A→ B there are three statements we can make which

would always make sense. First Noh is the trivial homomorphism 0, second that there

is a homomorphism τ :B → A so that hoτ is multiplication by N , and third that τoh is

multiplication by N . So we can give to any homomorphism three non–negative integers:

The exponent, the cross–section degree, and the retraction degree. The exponent is the

smallest positive integer such that Noh is the trivial homomorphism 0. If there is no such

N then the exponent is zero. Similarly the cross–section degree is the smallest positive

N such that there is a τ , called a cross–section transfer, so that hoτ is multiplication by

N . Finally the retraction degree is the smallest positive N such that there is a τ , called a

retraction transfer, so that τoh is multiplication by N .

In accordance with the Function Principle, we predict that these three numbers will be

seen to be broad concepts. Their breadth should be less than the breadth of equivalence,

retraction and cross–section because the concepts are valid only for categories of abelian

groups and homomorphisms. But exponent, cross–section degree and retraction degree can

be pulled back to other categories via any functor from that category to the category of

abelian groups. So these integers potentially can play a role in many interesting categories.

In fact for the category of topological spaces and continuous maps we can say that any

continuous map f :X → Y has exponent N or cross–section degree N or retraction degree

N if the induced homomorphism f∗:H∗(X)→ H∗(Y ) on integral homology has exponent

N or cross–section degree N or retraction degree N respectively.

As evidence of the breadth of these concepts we point out that for integral homology,

cross–section transfers already play an important role for fibre bundles. There are natural

transfers associated with many of the important classical invariants such as the Euler

characteristic and the index of fixed points and the index of vector fields,[B–G],[G1] and

the Lefschetz number and coincidence number and most recently the intersection number,

[G–O]. And a predicted surprise relationship occurs in the case of cross–section degree for

a map between two spaces. In the case that the two spaces are closed oriented manifolds of

the same dimension, the cross–section degree is precisely the absolute value of the classical
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Brouwer degree. The retraction degree also is the Brouwer degree for closed manifolds if

we use cohomology as our functor instead of homology, [G1].

The most common activity in Mathematics is solving equations. There is a natural way

to frame an equation in terms of functions. In an equation we have an expression on the

left set equal to an expression on the right and we want to find the value of the variables

for which the two expressions equal. We can think of the expressions as being two function

f and g from X to Y and we want to find the elements x of X such that f(x) = g(x).

The solutions are called coincidences. Coincidence makes sense in any category and so we

would expect the elements of any existence or uniqueness theorem about coincidences to

be very broad indeed. But we do not predict the existence of such a theorem. Nevertheless

in Topology there is such a theorem. It is restricted essentially to maps between closed

oriented manifolds of the same dimension. It asserts that locally defined coincidence indices

add up to a globally defined coincidence number which is given by the action of f and g

on the homology of X . In fact this coincidence number is the alternating sum of traces of

the composition of the umkehr map f!, which is defined using Poincare Duality, and g∗,

the homomorphism induced by g. We predict, at least in Topology and Geometry, more

frequent appearances of both the coincidence number and also the local coincidence index

and they should relate with other concepts.

If we consider self maps of objects, a special coincidence is the fixed point f(x) = x.

From the point of view of equations in some algebraic setting, the coincidence problem can

be converted into a fixed point problem, so we do not lose any generality in those settings

by considering fixed points. In any event the fixed point problem makes sense for any

category. Now the relevant theorem in Topology is the Lefschetz fixed point theorem. In

contrast to the coincidence theorem, the Lefschetz theorem holds essentially for the wider

class of compact spaces. Similar to the coincidence theorem, the Lefschetz theorem has

locally defined fixed point indices which add up to a globally defined Lefschetz number.

This Lefschetz number is the alternating sum of traces of f∗, the homomorphism induced

by f on homology. This magnificent theorem is easier to apply than the coincidence

theorem and so the Lefschetz number and fixed point index are met more frequently in
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various situations than the coincidence number and coincidence indices.

In other fields fixed points lead to very broad concepts and theorems. A linear operator

gives rise to a map on the one dimensional subspaces. The fixed subspaces are generated

by eigenvectors. Eigenvectors and their associated eigenvalues play an important role in

Mathematics and Physics and are to be found in the most surprising places.

Consider the category of C∞ functions on the Real Line. The derivative is a function

from this category to itself taking any function f into f ′. The derivative practically defines

the subject of calculus. The fixed points of the derivative are multiples of ex. Thus we

would predict that the number e appears very frequently in calculus and any field where

calculus can be employed. Likewise consider the set of analytic functions of the Complex

Numbers. Again we have the derivative and its fixed point are the multiples of ez. Now it

is possible to relate the function ez defined on a complex plane with real valued functions

by

e(a+ib) = ea(cos(b) + i sin(b)).

We call this equation de Moivre’s formula. This formula contains an unbelievable amount

of information. Just as our concept of space–time separation is supposed to break down

near a black hole in Physics, so does our definition–theorem view of Mathematics break

down when considering this formula. Is it a theorem or a definition? Is it defined by sin

and cos or does it define those two functions?

Up to now the function principle predicted only that some concepts and objects will

appear frequently in undisclosed relationships with important concepts throughout Math-

ematics. However the de Moivre equation gives us methods for discovering the precise

forms of some of the relationships it predicts. For example, the natural question “When

does ez restrict to real valued functions?” leads to the “discovery” of π. From this we

might predict that π will appear throughout calculus type Mathematics, but not with the

frequency of e. Using the formula in a mechanical way we can take complex roots, prove

trigonometric identities, etc.

There is yet another fixed point question to consider: What are the fixed points of the

identity map? This question not only makes sense in every category; it is solved in every
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category! The invariants arising from this question should be even broader than those

from the fixed point question. But they are very uninteresting. However, if we consider

the fixed point question for functions which are equivalent to the identity under some

suitable equivalence relation in a suitable category we may find very broad interesting

things. A suitable situation involves the fixed points of maps homotopic to the identity

in the topological category. For essentially compact spaces the Euler characteristic (also

called the Euler–Poincare number) is an invariant of a space whose nonvanishing results

in the existence of a fixed point. This Euler characteristic is the most remarkable of all

mathematical invariants. It can be defined in terms simple enough to be understood by a

school boy, and yet it appears in many of the star theorems of Topology and Geometry.

A restriction of the concept of the Lefschetz number, its occurrence far exceeds that of

its “parent” concept. First mentioned by Descartes, then used by Euler to study regular

polyhedra, the Euler characteristic slowly proved its importance. Bonnet showed in the

1840’s that the total curvature of a closed surface equaled a constant times the Euler

characteristic. Poincare gave it its topological invariance by showing it was the alternating

sum of Betti numbers. In the 1920’s Lefschetz showed that it determined the existence of

fixed points of maps homotopic to the identity, thus explaining, according to the Function

Principle, its remarkable history up to then and predicting the astounding frequency of its

subsequent appearances in Mathematics.

The Euler characteristic is equal to the sum of the local fixed point indices of the

map homotopic to the identity. We would predict frequent appearances of the local index.

Now on a smooth manifold we consider vector fields and regard them as representing

infinitesimally close maps to the identity. Then the local fixed point index is the local

index of the vector field.

These considerations lead us to the prediction that a certain equation due to Marston

Morse, [M], will play a very active role in Mathematics, and by extension Physics. This

equation, which we call the Law of Vector Fields was discovered in 1929 and has not played

a role at all commensurate with our prediction up until now.

We describe the Law of Vector fields. Let M be a compact manifold with boundary.
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Let V be a vector field on M with no zeros on the boundary. Then consider the open set

of the boundary of M where V is pointing inward. Let ∂−V denote the vector field defined

on this open set on the boundary which is given by projecting V tangent to the boundary.

The Euler characteristic of M is denoted by χ(M), and Ind(V ) denotes the index of the

vector field. Then the Law of Vector Fields is

Ind(V ) + Ind(∂−V ) = χ(M)

We propose two methods of applying the law of vector fields to get new results and

we report on their successes. These successes and the close bond between Physics and

Mathematics encourage us to predict that the Law of Vector Fields and its attendant

concepts must play a vital role in Physics.

3. The Law of Vector Fields

Just as de Moivre’s formula gives us mechanical methods which yields precise relation-

ships among broad concepts, we predict that the Law of Vector Fields will give mechanical

methods which will yield precise relationships among broad concepts.

One method is:

1. Choose an interesting vector field V and manifold M .

2. Adjust the vector field if need be to eliminate zeros on the boundary.

3. Identify the global and local Ind V .

4. Identify the global and local index Ind(∂−V ).

5. Substitute 3 and 4 into the Law of Vector Fields.

We predict that this method will succeed because the Law of Vector Fields is morally

the definition of index, so all features of the index must be derivable from that single

equation. We measure success in the following descending order: 1. An important famous

theorem generalized; 2. A new proof of an important famous theorem; 3. A new, interesting

result. We put new proofs before new results because it may not be apparent at this time

that the new result will famous or important.
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In category 1 we already have the extrinsic Gauss-Bonnet theorem of differential Ge-

ometry [G3], the Brouwer fixed point theorem of Topology [G3], and Hadwiger’s formulas

of Integral Geometry, [G3], [Had], [Sa]. In category 2 we have the Jordan separation theo-

rem, The Borsuk-Ulam theorem, the Poincare-Hopf index theorem of Topology; Rouche’s

theorem and the Gauss-Lucas in complex variables; the fundamental theorem of algebra

and the intermediate value theorem of elementary Mathematics; and the not so famous

Gottlieb’s theorem of group homology, [G2]. Of course we have more results in category

3, but it is not so easy to describe them with a few words. One snappy new result is the

following: Consider any straight line and smooth surface of genus greater than 1 in three

dimensional Euclidean space. Then the line must be contained in a plane which is tangent

to the surface, ([G3], theorem 15).

We will discuss the Gauss-Bonnet theorem since that yields results in all three cate-

gories as well as having the longest history of all the results mentioned. One of the most

well-known theorems from ancient times is the theorem that the sum of the angles of a

triangle equals 180 degrees. Gauss showed for a triangle whose sides are geodesics on a

surface M in three-space that the sum of the angles equals π +
∫
M
KdM , where K is

the Gaussian curvature of the surface. Bonnet pieced these triangles together to prove

that for a closed surface M the total curvature
∫
M
KdM equals 2πχ(M). Hopf proved

that
∫
M
KdM , where M is a closed hypersurface in odd dimensional Euclidean space and

K is the product of the principal curvatures must equal the degree of the Gauss map

N̂ : M2n → S2n times the volume of the unit sphere. Then he proved 2 deg(N̂) = χ(M2n).

(Morris Hirsch in [Hi] gives credit to Kronicker and Van Dyck for Hopf’s result.) For a

history of the Gauss-Bonnet theorem see [Gr], pp. 89-72 or [Sp], p. 385.

Let f : M → Rn be a smooth map from a compact Riemannian manifold of dimension

n to n-dimensional Euclidean space so that f near the boundary ∂M is an immersion. The

index of the gradient of xof : M → R, where x is the projection of Rn onto the x-axis, is

equal to the difference between the Euler Characteristic and the degree of the Gauss map.

Thus

Ind(grad(xof)) = χ(M)− deg N̂.
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This equation leads to an immediate proof of the Gauss-Bonnet Theorem, since for odd

dimensional M and any vector field W , the index satisfies Ind(−W ) = − Ind(W ). Thus

the left side of the equation reverses sign while the right side of the equation remains the

same. Thus χ(M) equals the degree of the Gauss-map, which is the total curvature over

the volume of the standard n− 1 sphere. Now 2χ(M) = χ(∂M), so we get Hopf’s version

of the Gauss-Bonnet theorem.

Note as a by-product we also get Ind(grad(xof)) = 0 which is a new result thus falling

into category 3. Another consequence of the generalized Gauss-Bonnet theorem follows

when we assume the map f is an immersion. In this case the gradient of xof has no zeros,

so its index is zero so the right hand side in zero and so again χ(M) = deg N̂ . This is

Haefliger’s theorem [Hae], a category 2 result. Please note in addition that the Law of

Vector Fields applied to odd dimensional closed manifolds, combined with the category

2 result Ind(−W ) = − Ind(W ), implies that the Euler characteristic of such manifolds is

zero, (category 2). So the Gauss-Bonnet theorem and this result have the same proof in

some strong sense. Also our prediction of the non-existence of magnetic monopoles follows

from the same result!

Just as the Gauss-Bonnet theorem followed from considering pullback vector fields,

the Brouwer fixed point theorem is generalized by considering the following vector field.

Suppose M is an n-dimensional body in Rn and suppose that f : M → Rn is a continuous

map. Then let the vector field Vf on M be defined by drawing a vector from m to the

point f(m) in Rn. If the map f satisfies the transversal property, that is the line between

m on the boundary of M and f(m) is never tangent to ∂M , than f has a fixed point if

χ(M) is odd (category 1). This last sentence is an enormous generalization of the Brouwer

fixed point theorem, yet it remains a small example of what can be proved from applying

the Law of Vector Fields to Vf . In fact the Law of Vector Fields applied to Vf is the proper

generalization of the Brouwer fixed point theorem.

A second method of producing Mathematics from the Law of Vector Fields involves

making precise the statement that the Law defines the index of vector fields, [G–S]. In

this method we learn from the Law. The Law teaches us that there is a generalization of
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homotopy which is very useful. This generalization, which we call otopy, not only allows

the vector field to change under time, but also its domain of definition changes under time.

An otopy is what ∂−V undergoes when V is undergoing a homotopy. A proper otopy is

an otopy which has a compact set of zeros. The proper otopy classes of vector fields on a

connected manifold is in one to one correspondence with the integers via the map which

takes a vector field to its index. This leads to the fact that homotopy classes of vector

fields on a manifold with a connected boundary where no zeros appear on the boundary

are in one to one correspondence with the integers. This is not true if the boundary is

disconnected.

We find that we do not need to assume that vector fields are continuous. We can

define the index for vector fields which have discontinuities and which are not defined

everywhere. We need only assume that the set of “defects” is compact and never appears

on the boundary or frontier of the sets for which the vector fields are defined. We then

can define an index for any compact connected component of defects (subject only to the

mild condition that the component is open in the subspace of defects). Thus under an

otopy, it is as if the defects change shape with time and collide with other defects, and

all the while each defect has an integer associated with it. This integer is preserved under

collisions. That is, the sum of the indices going into a collision equals the sum of the

indices coming out of a collision, provided no component “radiates out to infinity”, i.e.

loses its compactness.

This picture is very suggestive of the way charged particles are supposed to interact.

Using the Law of Vector Fields as a guide we have defined an index which satisfies a con-

servation law under collisions. The main ideas behind the construction involve dimension,

continuity, and the concept of pointing inside. We suggest that those ideas might lie behind

all the conservation laws of collisions in Physics.

4. Properties of Index

The Law of Vector Fields is the following: Let M be a compact smooth manifold and

let V be a vector field on M so that V (m) 6= ~0 for all m on the boundary ∂M of M .
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Then ∂M contains an open set ∂−M which consists of all m ∈ ∂M so that V (m) points

inside. We define a vector field, denoted ∂−V on ∂−M , so that for every m ∈ ∂−M we

have ∂−V (m) = Projection of V (m) tangent to ∂−M . Under these conditions we have

(1) Ind V + Ind ∂−V = χ(M)

where Ind V is the index of the vector field and χ(M) is the Euler characteristic of M .

([M], [G–O], [P]).

The Law of Vector Fields can be used to define the index of vector fields, so the whole

of index theory follows from (1). The definition of index is not difficult, but proving it is

well-defined is a little involved, [G–S]. The definition proceeds as follows:

a) The index of an empty vector field is zero.

b) If M is a finite set of points and V is defined on all of the M (the vectors are necessarily

zero), then Ind(V ) = number of points in M .

c) If V is a proper vector field on a compact M , by which we mean V has no defects on

∂M , then we set

Ind V = χ(M)− Ind(∂−V ).

d) If V is defined on the closure of an open subset U of a smooth manifold M so that the

set of defects D is compact and D ⊂ U , then we say V is a proper vector field. The

index Ind V is defined to be Ind(V |M) where M is any compact manifold such that

D ⊂M ⊂ U .

e) If C is a connected component of D and C is compact and open in D define IndC(V )

to be the index of V restricted to an open set containing C and no other defects of V .

A key idea in proving this definition is well-defined is a generalization of the concept

of homotopy which we call otopy. An otopy is what ∂−V undergoes when V undergoes a

homotopy. The formal definition is as follows: An otopy is a vector field V defined on the

closure of an open set T ⊂M × I so that V (m, t) is tangent to the slice M × t. The otopy

is proper if the set of defects D of V is compact and contained in T . The restriction of
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V to M × 0 and M × 1 are said to be properly otopic vector fields. Proper otopy is an

equivalence relation.

The following properties hold for the index:

(2) Let M be a connected manifold. The proper otopy classes of proper vector fields on

M are in one to one correspondence via the index to the integers. If M is a compact

manifold with a connected boundary, then a vector field V is properly homotopic to

W if and only if Ind V = Ind W .

(3) Ind(V |A ∪B) = Ind(V |A) + Ind(V |B)− Ind(V |A ∩B)

(4) Ind(V ×W ) = Ind(V ) · Ind(W )

(5) Ind(−V ) = (−1)dim M Ind(V )

(6) If V has no zeros, then Ind(V ) = 0

(7) Ind(V ) =
∑
C IndC(V ) for all compact connected components C, assuming D is the

union of a finite number of compact connected components.

For certain vector fields the index is equal to classical invariants. Suppose f : Rn → Rn.

Let M be a compact n submanifold. Define V f by V f (m) = f(m). If f : ∂M → Rn − ~0,
then

(8) Ind V f = deg f .

Suppose f : U → Rn where U is an open set of Rn. Let Vf (m) = ~m−
−→
f(m). Then

(9) Ind Vf = fixed point index of f on U .

Suppose f : M → N is a smooth map between two Riemannian manifolds. Let V be

a vector field on N . Let f∗V be the pullback of V on M . We define the pullback by

〈f∗V (m), ~vm〉 = 〈V (f(m)), f∗(~vm)〉.
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Note that for f : M → R and V = d
dt

, we have f∗V = gradient f .

Now suppose that f : Mn → Rn where Mn is compact and V is a vector field on Rn

so that f has no singular points near ∂M and V has no zeros on f(∂M). Then if n > 1

(10) Ind f∗V =
∑
wivi + (χ(M)− deg N̂)

where N̂ : ∂M → Sn−1 is the Gauss map defined by the immersion of ∂M if Rn under f ,

and vi = Indci(V ) for the ith zero of V and wi is the winding number of the ith zero with

respect to f : ∂M → Rn. The winding number is calculated by sending a ray out from

the ith zero and noting where it hits the immersed n − 1 manifold ∂M . At each point of

intersection the ray is either passing inward or outward relative to the outward pointing

normal N . Add up these point assigning +1 if the ray is going from inside to outside, and

−1 if the ray goes from outside to inside. This is the generalized Gauss- Bonnet theorem.

Using the property that the Euler–Poincare number is an invariant of homotopy type

and the above properties of the index, the following useful properties of the Euler–Poincare

number can easily be proved.

1. χ(M) = 1 where M is contractible.

2. χ(M1 ∪M2) = χ(M1) + χ(M2)− χ(M1 ∩M2) where M1 and M2 and M1 ∩M2 are

submanifolds of M1 ∪M2.

3. χ(M1 ×M2) = χ(M1)× χ(M2)

4. χ(M) = 0 when M is a closed odd dimensional manifold.

5. χ(∂M) = 2χ(M) if M is even dimensional.

5. Vertical Vector Fields

Let F → E
p−→ B be a fibre bundle whose fibre F is a smooth manifold and whose

structure group is the group of diffeomorphisms of F . Then we have a vector bundle α

over B of vectors tangent to the fibres. That is α|F = tangent bundle of F . A vertical

vector field V on E is an assignment to a point e of E a vector in α at e. V might be
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empty or it might be defined on part of E. A more precise way to express this is that

V : S → α is a cross-section from some subset of S into α.

If B = I, the unit interval, then V is called an otopy. If V is an otopy which is

continuous and defined over all of E, then V is called a homotopy.

A vertical vector field V is proper if D ∩ p−1(C) is compact for all compact subsets C

of B where D is the set of defects of V .

A vertical vector field V is proper with respect to an open set U ⊂ E if (D∩U)∩p−1(C)

is compact for all compact C in B and if V can be extended continuously over the frontier

U − U so that there are no zeros on U − U .

If F → E
p−→ B is a fibre bundle so that F is compact and has boundary

·
F , we say a

vertical vector field V is proper with respect to the boundary if D ∩
·
E = ∅ where

·
E ⊂ E is

the set of points in E on the boundary of some fibre.

Note that V proper with respect to the boundary implies that V is proper with respect

to the open set E −
·
E.

The above definitions restrict to the concepts of proper homotopy and proper otopy

when B = I.

If W is a vertical vector field, and if V is the restriction of W to a fixed fibre, then

we say the defects of V interact via W if they are contained in a connected set of defects

of W . An important class of questions is the following. If F −→ E
p−→ B is a fibre bundle

and V is a vector field on a fibre F , is it possible to extend V to a vertical vector field

W so that certain defects of V do not interact, or so that the defects of W satisfy some

condition such as they are compact?

The extension of vector fields with nonzero indices puts strong conditions on the ho-

mology of the fibre bundle as the following results from [B–G] show:

Let F
i−→ E

p−→ B be a smooth fibre bundle with F a compact manifold with

boundary ∂F and B a finite complex. Let V be a proper vertical vector field defined on

an open set of E. We assume that V has no zeros on Ė. We will call such vector fields
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vertical vector fields for short in the next theorems.

In [B–G], we defined an S-map τV : B+ → E+ associated with V . This transfer τV

has the usual properties:

a) If V is homotopic to a vertical vector field V ′ by a homotopy of vertical vector fields, so

in particular no zeros appear on
·
E, then τV ′ is homotopic to τV .

b) τ∗V (p∗α ∪ β) = α ∪ τ∗V (β) for cohomology theories h∗ with cup products.

c) For ordinary homology or cohomology, p∗ ◦ τV∗ and τ∗V ◦p∗ is multiplication by the index

of V restricted to a fibre F , denoted Ind(V |F ).

(11) p∗ ◦ τV∗ = Ind(V |F )

Also in [B–G] the following theorem is shown. Given fibre bundle F
i−→ E

p−→ B

where V is a vertical vector field, that

0 = Ind(V |F )ω∗ : {X,ΩB} → {X,F}

is trivial. Here we assume that X is a finite complex, ΩB
ω−→ F is the transgression map

induced by the fibre bundle, {X, Y } denotes the group of stable homotopy classes from X

to Y .

It follows that

(12) 0 = Ind(V |F )ω∗ : H∗(ΩB)→ H∗(F )

6. The Nonexistence of Magnetic Monopoles

We have the following picture immerging out of the previous sections. A vector field

has a set of connected components of defects. Now under a homotopy these components

move around and collide with one another. There is a conservation law which says that the

sum of the indices of the components going into a collision is equal to the sum of the indices

of the components at the collision is equal to the sum of the indices after the collision,
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if during the homotopy all the components remain compact and there are only a finite

number of them. Thus the index remains conserved unless some component “radiates out

to infinity.” This suggests particles bearing charges could be modeled as defects of vector

fields.

The fact that charge–like conservation follows from a simple topological construct,

which depends only on continuity and dimension and pointing inside, suggests that the

topological concept of index has physical content.

There is another compelling reason to consider the index as a physical quantity. It is

an invariant of General Relativity. This is made precise in the following theorem.

theorem. Suppose V is a space–like vector field in a space–time S. Suppose M and

N are two time–like slices of S which can be smoothly deformed into each other. Suppose

D, the the set of defects of V , is compact in the region of S where the deformation takes

place. Then the index of V projected onto M is equal to the index of V projected onto N .

This theorem is true since we can set up a proper otopy between the two projected

vector fields given the hypotheses of the theorem. This means for any space–like vector

field, the index is invariant under any choice of space–like slices. Thus it is mathematically

true that the index is an invariant of general relativity, just like proper time, unless there

is topological radiation or there is a singularity or strange topology between the two slices

so that there is no deformation possible.

Now we will give an argument that Magnetic Monopoles do not exist using Classical

Field Theory. See [M–T–W], [P], [T], [F] for the relevant formalism.

Let F be an electromagnetic 2-form on space-time S. Let F̂ denote the associated

linear transformation on the tangent space of S. Let u denote a time-like unit vector

field. Then the electric vector field associated to u is a space-like vector field given by
−→
E = F̂u. Now consider the 2-form ∗F . Here the ∗ denotes the Hodge dual which depends

on the choice of orientation made on S. Now the magnetic field relative to u is given by

−−→B = (∗̂F )u. Note that
−→
B reverses direction if the orientation is changed. The Index

Principle asserts that either the index of −−→B = (∗̂F )u is zero, or the vector field is not
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defined. Now a magnetic monopole will have either index +1 or −1. Hence the monopole

cannot exist.

We make three remarks on the above argument. The first deals with the question:

Why doesn’t
−→
E reverse sign if we change our conventions of positive charge to negative

charge? We say that the vector field u represents a swarm of test charges. If the sign

of the test charge changes we still expect that the test charge will accelerate in the same

direction because the signs of every charge is reversed. If we insisted on keeping the sign

of the test charge the same and changed the signs on all the real charges it would be as if

we changed the experiment, so we should not expect that the index of
−→
E would remain

the same.

The second remark deals with the orientation of space-time. We are assuming that

changing the orientation of space-time does not intail a change in some experiment used

to define the electric and magnetic vectors. If it did, if for example some particle interacts

with F by means of an “intrinsic choice of orientation”, then the Index Principle would no

longer apply. So it is worthwhile to think a bit about changes in orientation.

The violation of parity by the weak force is illustrated by describing an experiment

which cannot take place if reflected in a mirror. Sudbury does it in describing the beta

decay of Cobalt 60 on page 273 of [Su]. and Feynman does it on page 17–11 in volume

III of [F–L–S] where he describes the Λ0 decay. In both cases the experiment would be

possible if one changed the handedness conventions in the mirror. That is, assume the

reflection carries the change from the right hand rule to the left hand rule. In that case,

the axial vectors spin and angular momentum would be reflected the correct way. Feynman

describes the mirror reflection very carefully in volume I , chapter 35, section 5 of [F–L–S].

There is no overriding reason why he chooses not to change the handedness in the reflected

world.

In Quantum Mechanics the transformation P is given by reflecting the coordinate

system. Since Quantum Mechanics concerns itself with formal manipulation of coordinate

systems, there is no question about reversing the handedness. It does not seem that chang-

ing orientation fits into Quantum Mechanics. But Classical Electrodynamics is unequiv-
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ocal that the handedness be changed. The change of coordinates of Quantum Mechanics

is replaced by the more intrinsic reflection diffeomorphism R. Now R is an isometry of

the Lorentzian metric which reverses orientation. Since every measurement must be the

same, if we reverse the orientation we can imagine R as an orientation preserving isometry

onto the target space–time and every statement involving electromagnetism on the source

space–time is in one to one correspondence with those of the target space–time. Then if we

change the orientation back so that R is not orientation preserving, the possibility exists

that there is some statement no longer true. Thus Classical Electromagnetism suggest that

the parity operator should be followed by a change of handedness, in which case everything

is invariant under it, and that all of the violations of P in fact are violations of changing

the orientation.

The third remark deals with the fact that there are zeros of
−→
B with nonzero indices.

This seems to violate the Index Principle. We argue that it does not because these zeros

can be removed by changing the coordinate system. More precisely,
−→
B depends on the

choice of the time–like vector field u. If we change u we change
−→
B and we can remove

these zeros or change their indices. If the magnetic monopole is a particle we wouldn’t

expect its existence to depend upon the choice of observers. So we wish to make precise

the concept of the index being undefined which will make the distinction between these

two cases clear.

The correct generalization of proper otopy is that of a proper vector field along the

fibres of a fibre bundle

M → E → B

where M is a smooth manifold and V is a vector field along the fibres and proper means

that the defects of V are compact over any compact subset of B. Then V restricted to

any fibre has the same index.

Now there is a very natural fibre bundle whose fibres are diffeomorphic to a standard

space–like slice M of a space-time S. Let B denote the space of space–like imbeddings of M

in S. Let G denote the group of self diffeomorphisms M . Then G acts as a transformation

group on B by composition on the right. Also G acts on B×M diagonally. The projection
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from B ×M to B commutes with these actions and hence induces a map on the quotient

spaces which gives rise to the fibre bundle

M → (B ×M)/G→ B/G

We will call this fibre bundle the space-time fibre bundle.

Now there is a natural way to put vertical vector fields on the space-time fibre bundle

given an antisymmetric 2-tensor F on S. Now for each M in S there is a normal unit future

pointing time-like vector field u. Then F̂ u is tangent to that slice since F̂ u is orthogonal

to u. See [P], [T]. We now think of F̂u as being tangent to the fibre M in the fibre bundle.

Thus we have our vertical vector field.

Now consider the 2-form ∗F . Here the ∗ denotes the Hodge dual which depends on

the choice of orientation made on S. Now the vector field along the fibre on the space-like

fibre bundle arising from ∗F is the magnetic vector field
−→
B on each fibre, and it reverses

direction if the orientation is changed. The Index Principle asserts that either the index

on each fibre is zero, or the vector field is not proper.

7. Possible Applications of the Index Principle

1. Suppose we have a time–like unit vector field u in a space–time M . Then the covariant

derivative is orthogonal to u. The zeros of this space–like field appear in all space–like

slices with the same index. Vector fields can arise as gradients of functions, as duals

to one–forms, as the dual of a two form contracted with a vector field, as the dual of

a 2–form operated on by the divergence ∗d∗ where ∗ is the Hodge dual and d is the

exterior derivative. The ∗ of a 3–form is a 1–form, but it is one that depends upon

the choice of the orientation. The Hodge dual ∗ depends upon orientation, but any

operation which involves an even number of Hodge duals is independent of orientation.

The Principle of the Invariance of Index then implies that those physical vector fields

which arise from one–forms given by formulas containing an odd number of Hodge

dual operators should have index zero or undefined. See [M–T–W], [P], [T], [F] for the

relevant formalism.
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2. Apply the Principle of Invariance of Index on vector fields arising on state spaces and

configuration spaces. We suggest studying pullbacks of equivariant vector fields on

the division algebras which look like Euclidean space. Thus on the line, the complex

plane, the quaternions, and the Cayley numbers there are equivariant vector fields

corresponding to addition as well as multiplication on the space minus the origin. We

should look at the pullbacks on a space–time pulled back by certain functions from

space–time to the division algebra. Hopefully the symmetries of Physics due to these

Lie groups will be reflected in the properties of the pullback vector fields. On the

simplest level, if we have space M and a potential function φ, then the pullback of the

constant vector field on the Real Numbers is the gradient of φ which is the force field.

There is another natural vector field on the Real Numbers which is an equivariant

vector field for the group of multiplications on R − 0. There is a function v whose

pullback of this equivariant vector field is equal to the gradient of φ. This v turns out

to be the speed of a particle obeying the potential φ.

3. We propose that familiar vector fields of Physics should be studied and the motion

of zeros and singularities be noted. For example, the electrostatic field. Given
−→
E ,

we can assign an integer to each point in space by introducing a constant vector

field which creates a zero at that point. The index of that zero is an integer. The

membrane between the positive integers and the negative integers appears interesting.

The relation of the zeros and the charges at equilibrium is interesting. A very nice

mathematical question in this regard is the following. Let
−→
E be the electrostatic

vector field of point charges satisfying Coulomb’s law. Is there a configuration which

will produce a zero of index equal to any specified integer? We can find zeros of index

1,−1, and 0, so far, [K].

4. For the easiest cases of eigenfunction solutions to Schrodinger’s equation, it looks as

if the gradient vector field of the wave function for each energy level have different

indices. If that is so, then every change from one eigenstate to another results in a

zero or discontinuity flying out of or into infinity.

5. Suppose we have a fibre bundle and a proper vector field defined on the total space
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so that every vector is tangent along the fibre. What kind of vector fields on a given

fibre could be the restriction of the global vector field along the fibre? Equation (11)

states that there is a transfer on homology whose trace is the index of the vector field

restricted to the fibre. Thus the homology of the fibre bundle restricts the possible

indices of vector fields on the fibre. For example, consider the principal SU(2) – bundle

whose total space is the 7 dimensional sphere and whose base space is the 4 dimensional

sphere. This is the Hopf fibration. The homology only permits transfers of trace 0.

Hence the index of the restriction of any vector field along the fibre restricted to a fibre

must be zero.

Now vector fields along the fibre of a fibre bundle are a generalization of the concept of

otopy. We can think of these vertical vector fields as representing a collection of possible

otopies under certain circumstances. We say that a set of defects potentially interact on a

fibre if they are contained in a connected component of defects in the total space. Then

the fact that a vector field along the fibre restricts to a vector field of index zero means

that the interacting zeros must have total index zero. Could some argument such as this

be made to imply that there must be total charge zero in the Universe?
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