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1. Introduction. Our work in this paper concerns the general question: Which

partially ordered sets, or equivalently topological spaces, can occur as the prime

spectra of certain types of Noetherian rings? Even when the rings are quite simple,

their prime spectra can be surprising. For example, let R be a one-dimensional

countable semilocal domain, and let x be an indeterminate over R. In [HW], a

characterization is given of the partially ordered sets that occur as Spec(R[x]): If R

is local, there are exactly two possibilities for Spec(R[x]), one of which occurs when

R is Henselian and the other when R is not Henselian. If R has more than one

maximal ideal, then the spectrum of R[x] is uniquely determined up to isomorphism

by the number of maximal ideals of R. (In this latter case, R cannot be Henselian.)

In [HLW], our main emphasis was to demonstrate that the situation for certain

spectra related to Spec(R[x]), such as the projective line Proj(R[s, t]), is similar to

that of Spec(R[x]), in that again just two cases occur for Proj(R[s, t]). In addition,

we included some axioms satisfied by the partially ordered set, Spec(B), where B

is a certain type of finitely generated birational extension of R[x]. Since then we

have become more intrigued by Spec(B), for we have discovered there exist infin-

itely many possibilities for it, although there still are two distinct basic situations

corresponding to whether or not R is Henselian.

In this article, we consider the prime spectra of integral domains B between the

polynomial ring R[x] and R[x, 1/f ], for R a one-dimensional semilocal domain with

maximal ideals m1,m2, ...mn, and f ∈ R[x] −
⋃n

i=1 mi[x]. We are particularly

interested in the case B = R[x, g/f ], where g and f are an R[x]-sequence.

We would like to thank Roger Wiegand for helpful conversations regarding this

material.

This is the final version of this paper, except for suggestions the referee may make.
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For convenience we repeat some conventions, notation, definitions and theorems

from [HLW] and [HW]. All rings we consider are commutative and contain a mul-

tiplicative identity. The terms “local” and “semilocal” include “Noetherian.”

1.1 Notation. For U a partially ordered set of finite dimension, elements u, v of U ,

and T a finite subset of U , we set

G(u) = {w ∈ U | w > u} and

Le(T ) = {w ∈ U | w < t ⇐⇒ t ∈ T}

= {w ∈ U | G(w) = T} .

Note that the set called L(T ) in [HW] is denoted Le(T ) here. (The notation is

chosen to suggest the “exactly-less-than” set.)

Let M(U) denote the set of maximal elements of U of maximal height and let

Mi(U) be the maximal elements of height i, for each i.

We will refer to two particular two-dimensional partially ordered sets from [HW],

and we describe them again here for convenience.

In [HW], it was shown that if S = Z−
⋃n

i=1 pi, where {pi | 1 ≤ i ≤ n} is a finite

set of primes, and R = ZS , then Spec(R[x]) is of the following type:

1.2 Definition. A partially ordered set U is called countable n-localized integer

polynomial or CZ(n)P if and only if

(P0) U is countable.

(P1) U has a unique minimal element u0.

(P2) U has dimension 2.

(P3) There exist infinitely many height-one maximal elements.

(P4) There exist n height-one nonmaximal special elements, which we denote

u1, u2, . . . un, satisfying:

(i) G(u1) ∪ · · · ∪ G(un) = M(U),

(ii) G(ui) ∩ G(uj) = ∅ for i 6= j, and

(iii) G(ui) is infinite for each i, 1 ≤ i ≤ n.

(P5) For each height-one nonspecial element u, G(u) is finite.

(P6) For each nonempty finite subset T of {height-2 elements of U}, Le(T ) is

infinite.
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Pictorially, a CZ(n)P partially ordered set looks like this:

∞ u1 u2 . . . un ∞

∞ ∞ . . . ∞

u0

(The relationships of the lower right boxed section, determined by (P5) and (P6),

are too complicated to display.)

The second partially ordered set is the type of Spec(V [x]), where V is a countable

Henselian discrete rank-one valuation domain.

1.3 Definition. A partially ordered set U is called countable Henselian polynomial

or CHP provided the same (P0)-(P5) as in UCZ(1)P above hold and:

(P6) For each finite subset T of {height-2 elements of U} of cardinality greater

than one, Le(T ) is empty. For each singleton t ∈ {height-2 elements of U}, Le({t})

is infinite.

Pictorially, a CHP partially ordered set looks like this:

∞ u1 ∞ ∞ · · ·

· · · · · ·

u0

It was shown in [HW] that these axiom systems are categorical. Also,
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1.4 Theorem. [HW, Theorem 2.7] For any one-dimensional semilocal countable

domain R with exactly n maximal ideals, Spec(R[x]) is either CZ(n)P or CHP .

Furthermore Spec(R[x]) is CHP if and only if R is Henselian and n = 1.

1.5 Proposition. [HLW, Proposition 3.1] Let (R,m1, . . . ,mn) be a one-dimensional

semilocal domain, x an indeterminate, A = R[x], f ∈ A−
⋃n

i=1mi[x], and let B be a

finitely generated A-algebra strictly between A and A[1/f ]. Then Spec(B) satisfies

the following axioms from CZ(n)P or CHP (Definitions 1.2 and 1.3):

(i) (P0) holds if R is countable.

(ii) (P1)–(P3) hold without additional hypotheses.

(iii) There are only finitely many height-one elements Q of Spec(B) for which G(Q)

is infinite. Moreover, each of these height-one prime ideals contains a maximal

ideal of R.

(iv) If fA has prime radical, then the number of these height-one prime ideals Q

is greater than the number n of maximal ideals of R, and the Q’s need not be

comaximal.

2. Construction of extra height-one j-primes.

The term j-prime refers to a prime ideal which is an intersection of maximal

ideals. Clearly a nonmaximal j-prime must be the intersection of infinitely many

maximal ideals. In a Noetherian domain of dimension 2, a height-one nonmaximal

prime P contained in infinitely many maximal ideals is a j-prime, and it is the

intersection of every infinite set of maximal ideals that contain it (since if c /∈ P ,

then there exist only finitely many primes minimal over the ideal (c, P )).

When R is a one-dimensional semilocal Noetherian domain, it is easily seen that

the non-maximal height-one j-primes of Spec(R[x]) are in one-to-one correspon-

dence with the maximal ideals of R, via P 7→ P ∩ R. The spectra of birational

extensions B of R[x] may differ from Spec(R[x]) in that we may have extra height-

one j-primes of Spec(B) which contract to the same maximal ideal of R.

Let j-Spec(B) = {j-primes of B}; and for each prime ideal, Q ⊂ B, define

j- rad(Q) =
⋂

{M maximal |M ⊇ Q}.

We see that the essential thrust of the axioms in Definitions 1.2 and 1.3, for the two

cases of Spec(R[x]), is the description of the j-spectrum (axioms (P4) and (P3)) and
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the specification of j-radicals. (For example, axiom (P6) says that for each finite

set T of height-two maximals, there are infinitely many height-one prime ideals P

having j-rad(P ) = ∩T .) In what follows we shall attempt to do the same thing for

Spec(B). In this section we consider j-Spec(B).

Remark. Suppose that B is an integral domain between R[x] and R[x, 1/f ], where

the coefficients of f generate the unit ideal in R. Let P be a non-maximal height-one

j- prime of B. Then

(1) Each maximal ideal of B of height two must contain a maximal ideal of R.

(2) P contains a maximal ideal of R.

Item (1) is clear by the dimension inequality [M, Theorem 15.5, p. 118]. To see item

(2), let m1,m2, ...mn be the maximal ideals of R and put P =
⋂

Mα, where {Mα}

is a set of height-two maximal ideals in B. Then P ∩ R =
⋂

Mα ∩ R ⊇
n
∩

i=1
mi 6= 0.

For most of the rest of this section, we suppose that (R,m) is a local one-

dimensional Noetherian domain, K its field of fractions, k = R/m, f, g ∈ R[x] is

an R[x]-sequence, and

A = R[x] ⊆ B = R[x][g/f ] ⊆ R[x, 1/f ].

We will also consider B as R[x, y]/(fy − g), where y is another indeterminate.

Before we proceed, we illustrate our construction by re-examining two examples

constructed in [HLW]. In these examples, R is a discrete rank-one valuation domain

with maximal ideal m = aR.

Example 1. Let f = x2 + a3 and g = x, so that B = R[x][x/(x2 + a3)]. Let

P1 = aB[1/f ] ∩ B = (a, a3/(x2 + a3))B and P2 = (a, x)B. Then P1 and P2 are

both height-one j-primes, and they are comaximal since

1 =
x2

x2 + a3
+

a3

x2 + a3
∈ P2 + P1 .

This becomes even clearer using the two-variable description of B:

B

aB
∼=

k[x, y]

(x2y − x)
=

k[x, y]

(x(xy − 1))
.

Thus B/aB has two minimal primes, generated by the images of x and xy − 1, ob-

viously comaximal and corresponding to two height-one primes of B which contain
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aB. Note that fR[x] = fK[x] ∩ R[x] is a prime ideal, because a generates m and

so no fractional root of a can be in K.

Pictorially, j-Spec(B) looks like this for Example 1:

∞ ∞

∞ P1 = (a, xy − 1)B P2 = (a, x)B

(0)

Example 2. Let f = x and g = a, so that B = A[a/x]. Let P1 = (a/x)B =

aB[1/f ]∩B and P2 = xB. Then P1 and P2 are both height-one j-primes, and they

are not comaximal since (x, a/x)B contains both of them. In the other description

of B,
B

aB
∼=

k[x, y]

(xy)
.

Obviously the ideals generated by the images of x and y are not comaximal since

they are both contained in the image of (x, y).

Pictorially, j-Spec(B) looks like this for Example 2:

∞ (x, a/x)B ∞

∞ P1 = (a/x)B P2 = xB

(0)

In both of these examples, only one of the nonmaximal height-one j-primes

“survives” in B[1/f ], namely P1 = mB[1/f ] ∩ B.
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Definition. The nonmaximal height-one j-primes P of B that survive in B[1/f ],

that is, PB[1/f ] ( B[1/f ], will be called survivors. Those that do not survive,

that is, PB[1/f ] = B[1/f ], will be called transients.

Remark. For any semilocal Noetherian one-dimensional domain R, there exists ex-

actly one survivor j-prime of B contracting to each maximal ideal of R, since

the height-one j-primes of B[1/f ] = R[x, 1/f ] are in one-to-one correspondence

with the maximals of R. (Here we are using the fact that f was chosen outside
⋃n

i=1 miR[x].)

Questions answered and observations made in (2.2) and (2.3).

(1) For R local, can such a birational extension B be constructed so that more

than one maximal ideal contains a given pair of height-one j-primes? Answer “no”.

(Theorem 2.2.3)

(2) For R local and n a positive integer, there exists such a birational extension

B of R[x] with exactly n height-one j-primes. (Corollary 2.3)

(3) At most two height-one j-primes can be contained in a given maximal ideal.

If a pair of height-one j-primes is contained in a maximal ideal, one of these will be a

survivor, and the other will be a transient j-prime. Every pair of transient j-primes

is co-maximal. It is possible to construct a ring so that a specified number of the

transient j-primes are co-maximal with a survivor j-prime and another specified

number of them are not.

2.1 Notation. Let (R,m, k) be a local one-dimensional domain, g, f an R[x]-

sequence and set B = R[x, g/f ] ∼= R[x, y]/(fy − g), B/mB ∼= k[x, y]/(f̄y − ḡ),

where f̄ , ḡ are the images of f, g in k[x]. Let π denote the natural map B → B/mB.

In the polynomial ring k[x, y] over the field k, write the factorization of f̄y − ḡ

into a product of irreducibles in the form

f̄y − ḡ = p(qy − s) = h1 · h2 · · ·hm · p1 · p2 · · · pn · (qy − s).

where (i) q and s are relatively prime elements of k[x],

(ii) h1, h2, . . . , hm, p1, p2, . . . , pn are powers of pairwise relatively prime irre-

ducible elements of k[x],

(iii) h1, h2, . . . , hm divide a power of q, and

(iv) p1, p2, . . . , pn are relatively prime to q.
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2.2 Theorem. Let (R,m, k), B, f, g,m, n etc. be as in 2.1. Then

(2.2.1) B has exactly m+n+1 non-maximal nonzero j-primes, of which m+n are

transient and one is a survivor j-prime P . The transient j-primes are associated

to π−1(hi(x)) and π−1(pj(x)), for 1 ≤ i ≤ m, 1 ≤ j ≤ n, and the survivor j-prime

is associated to π−1(q(x)y − s(x)).

(2.2.2) Furthermore, the transient j-primes H1, . . . ,Hm corresponding to the

factors h1(x), . . . , hm(x) are comaximal with the survivor j- prime, but the transient

j-primes Q1, . . . , Qn corresponding to p1(x), . . . , pn(x) are not comaximal with the

survivor j-prime.

(2.2.3) Every pair of height-one j-primes of B is contained in at most one max-

imal ideal of B. If both of the height-one j-primes are transient, then they are

comaximal.

(2.2.4) Every maximal ideal of B contains at most two height-one j-primes, at

most one of which is transient.

Pictorially, j-Spec(B) looks like this:

∞ • . . . ∞ • ∞ . . . ∞

∞ Q1 . . . Qn P H1 . . . Hm

(0)

Proof. By the Remark at the beginning of this section, every non-maximal height-

one j-prime of B contains m and therefore corresponds to a nonmaximal ideal

of

B/mB ∼= k[x, y]/(f̄y − ḡ) = S.

Since S is a Hilbert ring, every prime ideal of S is an intersection of maximal ideals.

We conclude that the height-one j-primes of B are in one-to-one correspondence



PRIME IDEAL STRUCTURE OF BIRATIONAL EXTENSIONS OF POLYNOMIAL RINGS9

with the minimal primes of S; and hence with the primes of k[x, y] associated to

the polynomials h1(x), . . . , hm(x), p1(x), . . . , pn(x) and q(x)y − s(x). The prime

ideal (q(x)y − s(x))S = p corresponds to a survivor j-prime of B since it survives

in the localization S[1/f̄ ]. The prime radicals of the ideals (hi) and (pj) correspond

to transient j-primes, since they do not survive in S[1/f̄ ].

(2.2.2) and (2.2.3): Since any two of h1, . . . , hm, p1, . . . , pn are relatively prime

in k[x], any two transient j-primes of B are comaximal. To see which are comaximal

with the survivor j-prime, we note that a maximal ideal containing the survivor

j-prime corresponds to a maximal ideal in k[x, y] containing qy − s, i.e., the set of

all elements of k[x, y] that vanish at a point (x0, y0) in the affine plane over the

algebraic closure of k for which q(x0)y0 − s(x0) = 0. Now if q(x0)y0 − s(x0) = 0,

we cannot have hi(x0) = 0, for then q(x0) = 0 and hence s(x0) = 0, contradicting

the hypothesis that q, s are relatively prime. Thus, hi is not in any maximal ideal

containing qy− s, and the corresponding transient j-prime in B is comaximal with

the survivor j-prime. But if we choose x0 so that pj(x0) = 0, then qj(x0) 6= 0, and

by setting y0 = s(x0)/q(x0) we find a maximal ideal of k[x, y] containing both pj and

qy − s; and hence the transient j-prime in B corresponding to pj is not comaximal

with the survivor j-prime. Finally, note that the maximal ideal of k[x, y] containing

pj and qy − s is the same no matter which root x0 of pj is used to find it; so the

corresponding j-primes of B are contained in only one maximal ideal.

(2.2.4) follows from (2.2.3). �

2.3 Corollary. For every m,n ≥ 0, there exists a birational extension B of R

of the form above which has exactly m + n transient j-primes and one survivor

j-prime, where exactly m of the transient j-primes are comaximal with the survivor

j-prime.

Proof. This is almost obvious since enough irreducibles can always be found to

satisfy the hypothesis of 2.2. The one sticky point is whether the polynomials f, g

can be chosen to be an R[x]-sequence, to insure that (fy − g) is prime. Since R[x]

is Cohen-Macaulay, it will suffice to find f, g with ht(f, g) = 2. Start with f, g 6= 0

mod m. Then there exist only finitely many primes in R[x] minimal over (g). If

ht(f, g) = 1, then ht(f, g, a) = 2, for some a ∈ m. Now there are infinitely many

elements of form f + a, f + a2, . . . . Consider I = (f + ai, f + aj), where i < j.
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Since ai(aj−i − 1) ∈ I and aj−i − 1 is a unit, ai, f ∈ I, so ht(I) = 2. It follows

that the height-one primes of (f + ai) are distinct for different i and so we can

choose ai to avoid the finite number of minimal primes of (g). Thus (g, f + ai) has

height two. �

Remark. It is not hard to see that results extending Theorem 2.2 and Corollary

2.3 can be obtained for R semilocal, with more than one maximal ideal. Since

the relations would be more complicated to state, we omit them. There is some

discussion of this in section 4.

3. The exactly-less-than set of a singleton is infinite.

Question. For T a finite set of height-two maximal elements of Spec(B), when is

the exactly-less-than set infinite? (That is, when do there exist infinitely many

height-one primes contained in exactly those maximals and no others?) If R is

Henselian and T contains more than one element, then the exactly less than set of

T is empty. For singleton sets T , we prove in this section that the exactly less than

set of T is infinite. (This is true both when R is Henselian and when it is not.)

3.1 Theorem. Suppose R is a one-dimensional semilocal domain with maximal

ideals m1, . . . ,mn, x is an indeterminate, f ∈ R[x]−
⋃n

i=1 mi[x], f, g ∈ R[x] is an

R[x]-sequence and B = R[x, g/f ]. Then for each height-two maximal ideal N of B,

there exist infinitely many height-one primes P such that N is the only height-two

maximal ideal containing P . That is, (P6) of CZ(n)P or CHP holds for singleton

subsets T of the set of all height-two elements of Spec(B).

We prove three lemmas in order to deduce the theorem. The first result is similar

to Lemma 3 in [rW1] which is attributed to Wolmer Vasconcelos.

3.2 Lemma. Let A be a one-dimensional Noetherian ring. Assume that all but at

most finitely many of the height-one prime ideals P of A satisfy the two conditions:

(i) P is the radical of a principal ideal, and (ii) AP is a discrete (rank-one) valuation

domain. Then every height-one prime ideal of A is the radical of a principal ideal.

Proof. Let Q1, Q2, . . . , Qn be the height-one maximals for which Qi is not the

radical of a principal ideal or AQi
is not a discrete valuation domain. Pick

x ∈ Q1 − (Q2 ∪ · · · ∪ Qn ∪
⋃

{ height-zero primes of A}).
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Then rad(xA) = Q1 ∩ P1 ∩ · · · ∩ Pm, where Pj = rad(yjA), for some yj ∈ A and

APj
is a discrete valuation domain. Write ym = y ; since Pm does not consist of

zerodivisors, y is not a zerodivisor. Since APm
is a discrete valuation domain, there

are positive integers h, j such that xhAPm
= yjAPm

, so z = xh/yj is a unit of

APm
; thus, there exists an s ∈ A − Pm such that sz ∈ A. Also yjz ∈ A. Therefore

A = (s, yj) = {r | rz ∈ A} and so z ∈ A. But since z is a unit in APm
, z /∈ Pm.

Hence rad(zA) = Q1 ∩ P1 ∩ · · · ∩ Pm−1. Repeating this procedure, we get a t ∈ A

such that rad(tR) = Q1. �

Remarks. Let A be a ring containing a field k. If k′ is an algebraic field extension

of k, then A′ = A ⊗k k′ is an integral extension ring of A that is a free A-module.

Let {ei} be a vector space basis for A over k. For any k-automorphism φ of k′,

extend φ to an A-automorphism φ′ of A′ by φ′(Σriei) = Σφ(ri)ei, for ri ∈ k′. (This

is clearly a well-defined k-vector space homomorphism, since {ei} is a k′-basis for

A′.) Let ejek = Σajkiei. Then

φ′((Σrjej)(Σskek)) = φ′(Σ
j,k

rjskejek)

= φ′(Σ
j,k

rjskΣ
i
ajkiei)

= φ′(Σ
i
(Σ
j,k

ajkirjsk)ei)

= Σ
i
(Σ
j,k

ajkiφ(rj)φ(sk)ei)

= φ′(Σrjej)φ
′(Σskek).

Thus φ′ is an A-automorphism of A′.

If k′/k is an algebraic Galois extension of fields with Galois group G and if G′

is the set of automorphisms of A′/A defined by extending the elements of G, then

G′ is a group of automorphisms of A′ having fixed ring A. This follows since an

element Σriei of A′ is fixed by every automorphism in G′ if and only if each ri is

fixed by every automorphism in G.

Under the assumption that k′/k is Galois, let P be a prime ideal of A for which

there exists a prime ideal P ′ of A′ lying over P such that P ′ is the radical of a

principal ideal aA′ for some element a of A′; then each conjugate φ′(P ′) of P ′ is

the radical of the principal ideal φ′(aA′). Since a has only finitely many distinct

conjugates with respect to G′, the set {φ′(P ′) : φ′ ∈ G′} is finite (even though the

group G′ may be infinite).
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We observe that P is the radical of the principal ideal bA, where b is the product

of the distinct conjugates of a: Every minimal prime of bA′ is of the form φ′(P ′)

for some φ in G′. Thus we have

rad(bA′) =
⋂

{φ′(P ′) : φ′ ∈ G′}.

Let Q be a prime in A that contains bA; then there is a prime Q′ in A′ lying

over Q and hence containing bA′. It follows that Q′ contains some φ′(P ′), and so

P = φ′(P ′) ∩ A ⊆ Q′ ∩ A = Q. Therefore rad(bA) = P .

3.3 Lemma. Let A be a ring containing a field k. Suppose k∗ is an algebraic

closure of k, A∗ = A⊗kk∗, and P is a prime ideal of A. If some prime ideal of A∗

lying over P is the radical of a principal ideal, then P is the radical of a principal

ideal of A. (Cf. [AEH, (2.13)].)

Proof. Let k′ be the separable algebraic closure of k in k∗, let G be the Galois

group of k′/k, and set A′ = A⊗k k′. Then A∗ is purely inseparable over A′. Let P ∗

be a prime ideal of A∗ lying over P and let a∗ ∈ A∗ be such that P ∗ = rad(a∗A∗).

Then P ′ = P ∗ ∩ A′ is the radical of the principal ideal (a∗)pe

A′, where p is the

characteristic of k and e is chosen so that a = (a∗)pe

∈ A′. By the above Remark,

it follows that P is the radical of the principal ideal bA, where b is the product of

the distinct conjugates of a. �

3.4 Remark. Let R be an arbitrary commutative ring, and let n be the nilradical of

R. If I is a radical ideal of R such that I/n in R/n is the radical of an n-generated

ideal in R/n, then I is the radical of an n-generated ideal in R. (For example, if

I/n = rad((x + n)R/n), then I = rad(xR), since every prime ideal of R contains

n.) Thus when considering the condition that each height-one prime of a ring R is

the radical of a principal ideal we may assume that R is reduced.

3.5 Lemma. Let k be a field and let x, y be indeterminates over k. Assume that

p, q, s ∈ k[x] with p, q nonzero and (q, s)k[x] = k[x]. Then every maximal ideal in

the ring S = k[x, y]/(p(qy − s)) is the radical of a principal ideal.

Proof. Write the irreducible factorization of p in the form (from (2.1))

p = h1 · h2 · · ·hm · p1 · p2 · · · pn,
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where h1, h2, . . . , hm, p1, p2, . . . , pn are powers of pairwise relatively prime irre-

ducible elements of k[x], h1, h2, . . . , hm divide a power of q, and p1, p2, . . . , pn are

relatively prime to q. By Lemma 3.3, we may assume k is algebraically closed (by

passing from S to S ⊗k k∗, where k∗ is an algebraic closure of k); and then (in-

creasing the number of pi’s and hi’s if necessary) we may assume the pi’s and hi’s

are powers of distinct linear factors. Finally, by Remark 3.4, we may assume the

pi’s and hi’s are linear and pi = x − ci, where q(ci) 6= 0.

We have that

p(qy − s) = h1 · h2 · · ·hm · p1 · p2 · · · pn · (qy − s).

Since hi, qy − s have no common points, the ideals they generate are comaximal.

(If hi(a) = 0, then q(a) = 0, which implies that q(a)b − s(a) = −s(a) 6= 0, for all

points (a, b).) Therefore, by the Chinese Remainder Theorem,

S ∼= k[x, y]/(h1) ⊕ · · · ⊕ k[x, y]/(hm) ⊕ S1 ,

where S1 = k[x, y]/(p1 · · · pn)(qy − s) .

Note that if s = 0, then q must be a unit; consequently no hi’s occur and S = S1.

Now the maximal ideals in the sum are of the form a maximal ideal in one

summand and the unit ideal in the remaining summands, and the first summands,

the k[x, y]/(hi), are all just isomorphic to k[y]. Thus once we show that every

maximal ideal in S1 is the radical of a principal ideal, the proof will be complete.

In fact, by Lemma 3.2, it suffices to show that if N is a maximal ideal of S1

which does not correspond to one of the finite number of points (ci, s(ci)/q(ci)),

for which the curve qy = s meets the line x = ci, then N is the radical of a

principal ideal. Note that (S1)N is a discrete valuation domain, since N is a simple

point of the variety V : (qy − s)
n

Π
i=1

(x − ci). First take N corresponding to (a, b)

on qy = s but not on any x = ci. Then the line x = a meets V only at (a, b), so

N = rad((x − a)S1). Now take N corresponding to (ci, b), where b 6= s(ci)/q(ci),

and set h = (qy − s) Π
j 6=i

(x− cj). Then the variety of h(x, y)− h(ci, b) meets V only

at (ci, b) (for, the curve h(x, y) = h(ci, b) meets the line x = ci only at the point

(ci, b), and for any point off the line x = ci at which (qy − s)
n

Π
j=1

(x − cj) vanishes,

h also vanishes, but h(ci, b) 6= 0), so N = rad((h(x, y) − h(ci, b))S1). �
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Proof of 3.1. Let m1, . . . ,mn be the maximal ideals of R. Then by the dimension

inequality [M, Theorem 15.5, p.118], N ∩ R = mi, for some i. For convenience, let

m = mi. Now N is the preimage of a maximal ideal in

B

mB
=

R[x, y]

(m, fy − g)
=

k[x, y]

(f̄y − ḡ)
,

where k = R/m and overbars denote images mod m. By Lemma 3.5, the image

of N is the radical of a principal ideal (h̄). Let h be a preimage of h̄ and let P

be a minimal prime of h contained in N . Then N is the only height-two prime

containing P . Moreover, P does not contain m (because (m, h)B has height two).

Thus P ∩R = 0. However, for all 0 6= a ∈ m, h+a is a preimage of h̄ and h+a /∈ P .

(Otherwise, a ∈ P .) Therefore we obtain infinitely many such P in this way. �

4. Axioms for spectra of birational extensions.

4.1 Definition. Let m,n be nonnegative integers. A partially ordered set U is

called countable birational polynomial of type (m,n), or CBZ(1)P (m,n) provided:

(P0)–(P3),(P6) Same as in Definition 1.2 (for CZ(1)P ).

(P4′) There exist exactly m + n + 1 height-one elements u, the “j-elements”,

with the property that G(u) is infinite: the “survivor” u1 and the “transients”:

h1, . . . , hm (comaximal to survivor), and

p1, . . . , pn (not comaximal to survivor) .

Also there are exactly n height-two elements distinguished by the property that they

are above more than one of the j-elements; denote them by b1, . . . , bn (special max-

imals).

These elements satisfy: (for all 1 ≤ i 6= r ≤ m, 1 ≤ j 6= t ≤ n)

G(u1) ∩ G(hi) = G(hi) ∩ G(hr) = G(hi) ∩ G(pj) = G(pj) ∩ G(pt) = ∅

G(u1) ∩ G(pj) = {bj} , and

M(U) = G(u1) ∪
m⋃

i=1

G(hi) ∪
n⋃

j=1

G(pj).

Note: If n = 0, then u1 is indistinguishable from every hi (in that there exists

an order-isomorphism of U switching them).
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4.2 Definition. A partially ordered set U is called countable Henselian birational

polynomial of type (m,n) or CHP (m,n) provided:

(P0)–(P3),(P4′) Same as in 4.1.

(P6′) For each finite subset T of {height-2 elements of U} of cardinality greater

than one, Le(T ) is empty. For each singleton t ∈ {height-2 elements of U}, Le({t})

is infinite.

Remark. These sets of axioms are categorical. That is, if U and V are two partially

ordered sets satisfying 4.1, then U is order-isomorphic to V ; and similarly for 4.2.

Proof of Remark. We first define φ : U → V on all easily identified height-zero and

height-one elements of U :

φ(the unique minimal element of U) = the unique minimal element of V .

φ(the survivor element u1 of U) = the survivor element v1 of V .

φ(the m transient elements (hi’s) comaximal to u1 of U) = the m transient

elements comaximal to v1 of V .

φ(the n transient elements (pj ’s) not comaximal to u1 of U) = the n transient

elements not comaximal to v1 of V .

φ(the countably infinitely many height-one maximal elements of U) = the count-

ably infinitely many height-one maximal elements of V .

Next we define φ on the height-two elements:

φ(the unique special maximal, bj of U , for which u1 < bj and pj < bj) = the

unique special maximal, cj , of V for which v1 < cj and φ(pj) < cj).

The rest of the height-two elements in U and V occur in countably infinite

clusters, so we match them:

φ(G(u1) − {b1, . . . , bm}) = G(φ(u1)) − {φ(b1), . . . , φ(bm)}.

φ(G(hi) = G(φ(hi)), for each transient element hi comaximal to u1.

φ(G(pj)− {b1, . . . , bm}) = G(φ(pj))− {φ(b1), . . . , φ(bm)}, for each transient ele-

ment pj not comaximal to u1.

Finally we define φ(u), for each height-one element u that is not a j-element. The

set of all such u is partitioned by the sets Le(T ) as T varies over all finite subsets

(in the case of (4.1)) or all singleton subsets (in (4.2)) of the set of all height-two

elements of U . By (P6) and (P6′), these sets Le(T ) are countably infinite, so we

can match them. That is, we define
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φ(Le(T )) = Le(φ(T )), for each such set T of height-two elements of U .

By inspection, we see that φ is a bijection U → V . We claim that u < w in

U ⇐⇒ φ(u) < φ(w) in V . Let u < w be elements of U . If ht(u) = 0, then

ht(φ(u)) = 0, so φ(u) < φ(w). If u = u1, the survivor, and w = bj , a special

maximal, then φ(u1) = v1 < φ(bj). If u = u1, the survivor, but w 6= bj , for

any special maximal bj , then w ∈ G(u1) − {b1, . . . , bm}, so φ(w) ∈ G(φ(u1)) −

{φ(b1), . . . , φ(bm)}, which implies φ(u1) = v1 < φ(w).

The argument for every transient j-transient u of U is similar.

If u is not a j-prime, then G(u) = T is a finite subset of the height-two maximals

and w ∈ T, u ∈ Le(T ). Thus φ(u) ∈ Le(φ(T )), so φ(u) < φ(w). In all cases we have

shown that u < w in U ⇒ φ(u) < φ(w) in V . Since φ−1 is defined similarly to φ,

we have u < w in U ⇐ φ(u) < φ(w) in V . �

4.3 Theorem. Let (R,m) be a (countable) one-dimensional Henselian local do-

main, g, f an R[x]-sequence and set B = R[x, g/f ] ∼= R[x, y]/(fy − g), B/mB =

(R/m)[x, y]/(f̄y − ḡ), where f̄ , ḡ are the images of f, g in (R/m)[x]. Write the

factorization of f̄y − ḡ into a product of irreducibles as in (2.1). Then Spec(B)

is CHP (m,n), where m,n are given in (2.1). (If R is not countable, all axioms

except (P0) hold.)

Proof. In 1.5, it was shown that (P0)-(P3) hold. We check (P4′) by inspecting

Theorem 2.2 and matching the elements appropriately. First denote the survivor

prime from 2.2 by u1. By an abuse of notation, we let the hi’s refer to j-elements

of Spec(B) which are comaximal with u1 as well as to the polynomials which were

associated to those prime ideals. Similarly the pj ’s stand for j-elements of Spec(B)

which are not comaximal with u1 as well as the polynomials. Assign bj , 1 ≤ j ≤ n,

to be the maximal elements above pj and u1, 1 ≤ j ≤ n. Then (P4′) holds.

To see that the first part of (P6′) holds, let T be a finite set of height-two

maximals in B for which Le(T ) 6= ∅, and take P in Le(T ). Then P is not a j-prime,

so P∩R = 0, and hence B/P is a one-dimensional domain finitely generated over R.

By the dimension formula [M, Theorem 15.6, p. 118], B/P is algebraic over R. Since

R is a one-dimensional Henselian domain, the integral closure of R in every finite

algebraic field extension is a DVR. It follows that every one-dimensional domain

algebraic over R is integral over R and has a unique maximal ideal. Therefore B/P
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is local, i.e., T is a singleton. The second part of (P6′) holds by (3.1) �

We suspect that a similar result holds for non-Henselian local domains, namely

that the answer to the following question is “yes”:
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4.4 Question. Let R be a countable one-dimensional local non-Henselian do-

main with maximal ideal m, f ∈ R[x] − m[x], g, f an R[x]-sequence and set

B = R[x, g/f ] ∼= R[x, y]/(fy − g), B/mB = (R/m)[x, y]/(f̄y − ḡ), where f̄ , ḡ

are the images of f, g in (R/m)[x]. Write the factorization of f̄y− ḡ into a product

of irreducibles as in (2.1). Does Spec(B) satisfy CBZ(1)P (m,n), where m,n are

given in (2.1)? (If R is not countable, do all axioms except (P0) hold?)

“Proof”. It would suffice to prove that Le(T ) is infinite, for T a finite set of height-

two maximal ideals with more than one element. �

There is some evidence that this is true and we now give some examples, making

use of results of Roger Wiegand [rW1][rW2]. In particular, he has given a set of

axioms characterizing U ∼= Spec(Z[x]) ∼= Spec(k[x, y]), where k is a field contained

in the algebraic closure of a finite field:

(W1) U has a unique minimal element.

(W2) U has dimension 2.

(W3) For each element x of height one there are infinitely many elements y > x.

(W4) For each pair x, y of distinct elements of height one, there are only finitely

many elements z such that z > x and z > y.

(W5) Let S be a finite set of height-one elements of U and T a finite set of

height-two elements of U . Then there exists a height-one element w ∈ U such that

G(s) ∩ G(w) ⊆ T ⊆ G(w), for all s ∈ S.

Remarks. (1) If a partially ordered set U satisfies (W3) and (W4) and U contains

infinitely many height-one elements, then for every finite set S of height-one ele-

ments of U , there exist infinitely many height-two elements not in
⋃
{G(s) | s ∈ S}.

(2) If a partially ordered set U satisfies (W3), (W4) and (W5), then ( U contains

infinitely many height-one elements and) U satisfies (W) below:
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(W) Let S be a finite set of height-one elements of U and T a finite set of height-

two elements of U . Then there exist infinitely many height-one elements w ∈ U

such that G(s) ∩ G(w) ⊆ T ⊆ G(w), for all s ∈ S.

Proof of Remark 1. Let T be a finite set of height-two elements of U . Suppose that

every height-two element of U is in the union

H = T ∪
⋃

{G(s) | s ∈ S}.

Choose a height-one element u 6∈ S. If G(u) ⊆ H, then

G(u) ⊆ (T ∩ G(u)) ∪
⋃

{G(s) ∩ G(u) | s ∈ S} .

But (W4) implies that each G(u) ∩ G(s) is finite, which contradicts (W3) for u.

Proof of Remark 2. It follows from (W5) and (W3) that U has infinitely many

height-one elements. (For, the w in (W5) cannot be in S — or else some G(s)∩G(w)

is infinite — so S∪{w} gives a new S to which to apply (W5), and so on.) Choose w1

from (W5), using T and S as given, and set S1 = S∪{w}. Now by the first remark,

there exists a new height-two element t1 /∈ T ∪(∪{G(s) | s ∈ S1}. Let T1 = T ∪{t1}.

By (W5), there exists an element w2 with G(s) ∩ G(w2) ⊆ T1 ⊆ G(w2), for all

s ∈ S1. Note that w2 6= w1 because w1 6< t1, but w2 < t1. However we do

have T ⊆ T1 ⊆ G(w2). Also note that for each s ∈ S, since s 6< t1, we have

G(s) ∩ G(w2) ⊆ T1 ∩ G(s) ⊆ T . Thus we have produced a second element which

satisfies the condition relative to T . Continuing in this way, we can get infintely

many elements. �

Roger Wiegand has shown [rW2, Theorem 2] for a field k that the spectrum of a

2-dimensional domain that is finitely generated as a k-algebra satisfies the axioms

(W1)-(W5) if and only if k is contained in the algebraic closure of a finite field.

In particular this means that (W) is also satisfied by Spec(k[x, y][g/f ]), where k

is a field contained in the algebraic closure of a finite field, and g, f are a k[x, y]-

sequence. This provides examples to which the following theorem applies.

4.5 Theorem. (1) Let (R,m) be a (countable) local one-dimensional domain, x

an indeterminate over R, f ∈ R[x] − m[x], g, f an R[x]-sequence, and consider

B = R[x, g/f ] ∼= R[x, y]/(fy − g), B/mB = (R/m)[x, y]/(f̄y − ḡ), where f̄ , ḡ are
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the images of f, g in (R/m)[x]. Write the factorization of f̄y − ḡ into a product of

irreducibles as in (2.1). Suppose there exists a one-dimensional Noetherian domain

D ⊂ R such that R is a localization of D and such that Spec(D[x, g/f ]) satisfies

(W). Then Spec(B) is CBZ(1)P (m,n) , where m,n are given in (2.1). (If R is

not countable, all axioms except (P0) hold.)

(2) Let R be a (countable) semilocal one-dimensional domain with exactly t

maximal ideals, x an indeterminate over R, f ∈ R[x] such that the coefficients

of f generate the unit ideal of R, g, f an R[x]-sequence, and set B = R[x, g/f ] ∼=

R[x, y]/(fy−g). Suppose there exists a one-dimensional Noetherian domain D ⊂ R

such that R is a localization of D and such that Spec(D[x, g/f ]) satisfies (W). Then

Spec(B) satisfies a generalization of CBZ(1)P (m,n), given below (4.6). (If R is

not countable, all axioms except (P0) hold.)

4.6 Definition. Let t be a positive integer and let (mi, ni)
t
i=1 be ordered pairs

of non-negative integers. A partially ordered set U is said to be countable bira-

tional polynomial of type (m1, n1), . . . , (mt, nt), or CBZ(t)P (m1, n1), . . . , (mt, nt)

provided:

(P0)–(P3),(P6) hold, from Definition 1.2 .

(P4′′) There exist exactly t+
t

Σ
i=1

(mi +ni) height-one j-elements u with the prop-

erty that G(u) is infinite. Exactly t of these j-elements will be denoted u1, . . . , ut

(“survivors”).

For each i, 1 ≤ i ≤ t, there are mi + ni associated “transient” elements:

hi1, . . . , himi
(comaximal to ui), and

pi1, . . . , pini
(not comaximal to ui).

There are exactly n1+· · ·+nt special height-two maximal elements, distinguished by

the property that they are above more than one of the j-elements; these are denoted

by bij , 1 ≤ i ≤ t, 1 ≤ j ≤ ni.



PRIME IDEAL STRUCTURE OF BIRATIONAL EXTENSIONS OF POLYNOMIAL RINGS21

These elements satisfy:

G(ui) ∩ G(pij) = {bij} ;

G(u) ∩ G(w) = ∅ for every pair (u,w) of distinct

j-elements {u,w} 6= {ui, pij} for all i, j ; and

M(U) =

t⋃

i=1

[G(ui) ∪
mi⋃

j=1

G(hij) ∪
ni⋃

j=1

G(pij)].

Proof of 4.5. Let m1,m2, ...mt be the maximal ideals of R. If P ∈ Spec(B) is such

that G(P ) is infinite, then P ∩ R = mi for some i. Using m for mi, we see that

Spec(Rm[x, g/f ]) satisfies (P4′) and it follows that Spec(B) satisfies (P4′′), with

the appropriate assignment of elements.

We check that (P6) holds. For this, let T be a finite nonempty set of height-

two maximals of Spec(B), and let S be the (finite) set of all height-one nonmax-

imal j-primes of Spec(B). Let C = D[x, g/f ], and let Ψ be the localization map

Spec(B) → Spec(C). Then Ψ(T ) is a finite set of height-two maximals of Spec(C)

and Ψ(S) is a finite set of height-one primes of Spec(C). By (W), there exist infin-

itely many elements w ∈ Spec(C) with GC(s) ∩ GC(w) ⊆ Ψ(T ) ⊆ GC(w), for all

s ∈ Ψ(S). (Here GC(u) means {v ∈ Spec(C) | v > u}.) Now each w = Ψ(w′) for

some w′ ∈ Spec(B), since GC(w)∩Ψ(T ) 6= ∅. It follows that GB(w′) ⊇ T . (Clearly

Ψ(GB(w′)) = GC(w)∩Ψ(Spec(B)).) Suppose that v ∈ GB(w′). Since v is a height-

two maximal of Spec(B), using (P4′) or (P4′′), we have v ∈ ∪{GB(s)|s ∈ S}. But

then v ∈ GB(w′)∩GB(s) for some s in S, and so Ψ(v) ∈ GC(w)∩GC(Ψ(s)) ⊆ Ψ(T ).

Since Ψ is one-to-one, we must have v ∈ T . �

We believe that a general semilocal version of Question(4.4) may also be true.
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