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I. Introduction

A classical result in commutative ring theory as recorded by W.

Krull in [7, page 24] asserts that if D is a one-dimensional Noethe-

rian domain, then each nonzero ideal A of D is a product of pairwise

comaximal primary ideals. Another result along these lines is a vari-

ant of the Chinese Remainder Theorem: an ideal A of a commutative

ring R is a product of pairwise comaximal primary ideals if and only

if R/A is a finite direct sum of rings Ri where (0) is a primary ideal

in each Ri. In particular, if dim(R/A) = 0 and A is contained in only
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finitely many prime ideals, the Chinese Remainder Theorem implies

that A is a finite product of primary ideals. This leads us to wonder:

Question. Which integral domains D have the property that each

nonzero ideal A of D can be written as a product

A = Q1 ·Q2 · · · · ·Qn

where the Qi’s are pairwise comaximal and have some additional

property?

We also consider this question for nonzero principal ideals aD of

D. In the case where aD is a principal ideal, a useful observation is

that the factors Qi are invertible ideals.

Obviously, any Dedekind domain has the property; in this case,

each Qi is a power of a maximal ideal. In this paper we settle the

question in the following cases: (i) each Qi has prime radical (Theo-

rem 1); (ii) each Qi is primary (Theorem 8); and (iii) each Qi is the

power of a prime (Theorem 9).

We became interested in this property from reading the paper

[11] by Sáez-Schwedt and Sánchez-Giralda. It is well known in the

classical theory of linear dynamical systems over fields that canonical

forms exist for controllable systems of any dimension. In the paper [2]

of J. Brewer and L. Klingler, it is shown by means of representation-

theoretic methods, that canonical forms are not likely to exist over

arbitrary principal ideal domains. The problem treated in [11] is

to try to determine a canonical form for two-dimensional control-

lable systems over principal ideal domains (and Dedekind domains).

In [11], the property above for all nonzero principal ideals was the

property the authors needed in order to carry out their successful

program.

Questions similar to the ones considered here, but without the co-
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maximality, have received attention by others. We thank the referee

for suggesting the following papers and the references listed there

[1], [8], [9]. We also thank Laszlo Fuchs for several helpful comments

and for sending us the article [3] concerning ideal theory in Prüfer

domains of finite character. As Professor Fuchs noted when we ex-

changed articles, our paper contains a result identical with one of the

theorems in [3]. We arrived at the theorem from completely different

directions.

II. Main Results

We begin with the weakest requirement on the factors and the

case of nonzero principal ideals.

Theorem 1 Let D be an integral domain. The following are equiv-

alent:

1. Each nonzero principal ideal aD of D can be written in the

form aD = Q1 ·Q2 · · · · ·Qn, where each Qi has prime radical

and the Qi’s are pairwise comaximal.

2. D has the following properties:

(a) For any maximal ideal M of D, the set of prime ideals of

D contained in M is linearly ordered under inclusion.

(b) Each nonzero principal ideal of D has only finitely many

minimal primes.

Proof. (1)⇒ (2) : Suppose that M is a maximal ideal of D and

that P1and P2 are incomparable prime ideals of D contained in M .

Let a be in P1 not P2 and b be in P2 not P1. The principal ideal abD

can be written in the form Q1 ·Q2 · · · · ·Qn, where each Qi has prime

radical and the Qi’s are pairwise comaximal. Since abD ⊆M , some

Q is contained in M , say Q1. Moreover, since the Qi’s are pairwise



4 J. W. Brewer and W. J. Heinzer

comaximal, only Q1 is contained in M . Thus, since P1 and P2 are

contained in M and contain abD, Q1 ⊆ P1 ∩ P2. But, Q1 cannot

have prime radical, for suppose that
√
Q1 = P , prime. Then P is

contained in P1 ∩ P2. Also, P must contain one of a or b. But this is

a contradiction to the choice of a and b and it follows that condition

(a) holds.

Let a be a nonzero element of D. Write aD = Q1 ·Q2 · · · · ·Qn,

where each Qi has prime radical Pi and the Qi’s are pairwise comax-

imal. If P is a minimal prime of aD, then P contains some Qi and

hence, P = Pi. It follows that {P1, P2, . . . , Pn} is the set of minimal

prime ideals of aD. This proves condition (b).

(2)⇒ (1) : Suppose that aD is a nonzero principal ideal of D and

that P1, P2, . . . , Pn are the minimal primes of aD. By condition (a),

the Pi’s, are pairwise comaximal. Hence, there exist xi in Pi and yi in

Pj for j 6= i such that xi + yi = 1. Let Di = D[1/yi], the localization

of D at the powers of the element yi. If Qi = aDi ∩D, then Qi has

radical Pi. Let M be a maximal ideal of D. Then either aD ⊆M or

aD 6⊆M . If aD 6⊆M , then aDM ∩D = D. If aD ⊆M , then M ⊃ Pi
for some i, and hence yi /∈M ; it follows that DM is a term in the

intersection D[1/yi] =
⋂
DP , where P is prime and yi /∈ P . Thus,

D ⊆
n⋂
i=1

Di ∩D[1/a] ⊆
⋂

M max
DM = D. Now, for every ideal A of

D, A =
⋂

M max
ADM ∩D. It follows that aD = Q1 ∩Q2 ∩ · · · ∩Qn.

Moreover the Qi’s are pairwise comaximal, so their intersection is

their product. This completes the proof.

The proof of Theorem 1 can be easily modified to prove

Theorem 2 Let D be an integral domain. The following are equiv-

alent:

1. Each nonzero ideal A of D can be written in the form A =
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Q1 ·Q2 · · · · ·Qn, where each Qi has prime radical and the Qi’s

are pairwise comaximal.

2. D has the following properties:

(a) For any maximal ideal M of D, the set of prime ideals of

D contained in M is linearly ordered under inclusion.

(b) Each nonzero ideal of D has only finitely many minimal

primes.

Remark 3 Note that condition 2(a) above is equivalent to the fol-

lowing: If P and Q are nonzero prime ideals of D, then either P

and Q are comaximal or P and Q are comparable. Viewed in this

way, conditions 2(a) and 2(b) are topological conditions on the prime

spectrum of D with the Zariski topology. More specifically, 2(a) says

that any two proper closed irreducible subsets of Spec(D) are either

comparable or disjoint; 2(b) says that each closed subset of Spec(D)

has only finitely many irreducible components. The paper [5] of M.

Hochster establishes the existence of many examples of integral do-

mains having these two properties.

There are situations in which Theorem 1 and Theorem 2 can be

combined into one result as the following proposition illustrates.

Proposition 4 Suppose that the integral domain D has the prop-

erty that each nonzero prime ideal of D is contained in only finitely

many maximal ideals. The following are equivalent:

1. Each nonzero ideal A of D can be written in the form A =

Q1 ·Q2 · · · · ·Qn, where each Qi has prime radical and the Qi’s

are pairwise comaximal.

2. Each nonzero principal ideal aD of D can be written in the

form aD = Q1 ·Q2 · · · · ·Qn, where each Qi has prime radical

and the Qi’s are pairwise comaximal.
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3. D has the following properties:

(a) For any maximal ideal M of D, the set of prime ideals of

D contained in M is linearly ordered under inclusion.

(b) Each nonzero principal ideal of D has only finitely many

minimal primes.

Proof. That (1) implies (2) is obvious and that (2) is equivalent

to (3) is the content of Theorem 1. Thus, we have only to prove

that (3) implies (1). Since condition (2a) is the same in both the-

orems, we have to verify that each nonzero ideal A of D has only

finitely many minimal primes. Pick a nonzero element a ∈ A and let

P1, P2, . . . , Pn be the minimal primes of aD. By hypothesis, each Pi

is contained in only finitely many maximal ideals, say Pi is contained

in Mi1, . . . ,Miki . Let P be a minimal prime of A. Then aD ⊆ P and

P ⊇ Pj for some j. It follows that P ⊆Mjl for some l between j1

and jkj . (P might be contained in more that one such Mjl, but

that causes no difficulty.) If Q is another minimal prime of A that

contains Pj , then Q ⊆Mji for i 6= l since the primes contained in a

given maximal ideal are comparable. Therefore, there are at most kj

distinct minimal primes of A that contain Pj . Since each minimal

prime of A must contain some Pj , it follows that there are at most

k1 + k2 + · · · kn minimal primes of A.

We record the following corollary to Theorem 2.

Corollary 5 Let D be a Prüfer domain. If each nonzero element

of D belongs to only finitely many maximal ideals of D, then each

nonzero ideal of D can be written in the form Q1 ·Q2 · · · · ·Qn, where

each Qi has prime radical and the Qi’s are pairwise comaximal.

Proof. If D is a Prüfer domain, then each localization of D at a

prime ideal is a valuation domain. In particular, the prime ideals of
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D contained in a given maximal ideal of D are linearly ordered under

inclusion. Let A be a nonzero ideal of D with P a minimal prime of

A. Since each nonzero element of D belongs to only finitely many

maximal ideals, the same is true for A. Let those maximal ideals be

M1,M2, . . . ,Mk. Then P ⊆Mj for some j. Since the prime ideals

of D contained in a given maximal ideal of D are linearly ordered,

any Mi can contain at most one minimal prime of A. Thus, A has

at most k minimal primes and the result follows from Theorem 2.

Remark 6 Laszlo Fuchs has pointed out to us that the proof of

Corollary 5 also applies for a non-Prüfer domain D: if each nonzero

element of D belongs to only finitely many maximal ideals and if

the prime ideals contained in a given maximal ideal of D are linearly

ordered under inclusion, then each nonzero ideal of D can be written

in the form Q1 ·Q2 · · · · ·Qn, where each Qi has prime radical and

the Qi’s are pairwise comaximal.

There exist Prüfer domains which satisfy the hypothesis of Theo-

rem 1 and which have nonzero elements contained in infinitely many

maximal ideals. For example, if Q denotes the field of rational num-

bers, Z the ring of integers,and X an indeterminate, let M be the

maximal ideal XQ[X](X) of Q[X](X). Then the domain D = Z+M

is a two-dimensional Prüfer domain having a unique prime ideal M

of height one and having infinitely many maximal ideals correspond-

ing to the maximal ideals of Z. The elements of M are contained

in infinitely many maximal ideals of D while the elements of D not

in M are in only finitely many prime ideals. Thus, D satisfies the

hypothesis of Theorem 1

We next present an example to illustrate the fact that Theorems

1 and 2 cannot always be combined. Thus, for the case when the

ideals Qi are only assumed to have prime radical, the condition for all
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principal ideals is not equivalent to the condition for all ideals. More

specifically, we construct a Prüfer domain D having the following

two properties: Each nonzero principal ideal of D has only finitely

many minimal primes; D has a nonzero ideal having infinitely many

minimal primes. Since a Prüfer domain has the property that any two

prime ideals contained in a given maximal ideal are comparable, this

example effectively separates Theorem 1 from Theorem 2. Thus, for

this Prüfer domain D, each nonzero principal ideal aD can be written

in the form aD = Q1 ·Q2 · · · · ·Qn, where each Qi has prime radical

and the Qi’s are pairwise comaximal, but there exists a nonzero ideal

A of D which cannot be so written.

Example 7 We are going to construct a Prüfer domain D having

for each positive integer n precisely two primes of height n, Mn

which is maximal, and Pn which is nonmaximal. This gives rise to

the diagram below describing the prime ideal lattice of D (the union

of the Pn is a unique maximal ideal of infinite height).

...
...

M4 P4

↖ ↑
M3 P3

↖ ↑
M2 P2

↖ ↑
M1 P1

↖↗
(0)

We construct D to be the union of a chain of Prüfer subdomains

Dn, where Dn is n-dimensional and Dn has two maximal ideals of

height n and has for each positive integer m < n two primes of height
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m, exactly one of which is maximal. The construction is such that

there exists an inclusion map of Dn into Dn+1 so that the two max-

imal ideals of Dn+1 of height n+ 1 both lie over the same maximal

ideal of Dn. Moreover there is also a nonmaximal prime of Dn+1 of

height n lying over this same maximal ideal of Dn. For each m < n,

the maximal ideal of Dn+1 of height m lies over the maximal ideal

of Dn of height m and the nonmaximal prime of Dn+1 of height m

lies over the nonmaximal prime of Dn of height m.

Let A := ∩∞n=1Mn. We show that each of the Mn’s is a minimal

prime of A, so that A has infinitely many minimal primes. This

follows from the fact that An := A ∩Dn is the Jacobson radical of

Dn and Dn has precisely n+ 1 maximal ideals, one of height i for

each i between 1 and n− 1 and two of height n. We have AnDn+1

properly contained in An+1 and A = ∪∞n=1An. As we go up from

Dn to Dn+1, our ideal A is picking up more minimal primes and

in the union has infinitely many. Now each principal ideal of D has

the form aD, where a is in Dn for some n. Then aDn has at most

n+ 1 minimal primes and by the construction, aD has at most n+ 1

minimal primes. The point is that in passing from Dn to Dn+1, there

are three prime ideals of Dn+1 lying over the same maximal ideal of

height n of Dn. If a is contained in one of them, then it is in all three

and has precisely one of them as a minimal prime.

We now spell out a way to construct such a Prüfer domain D. (We

will be intersecting finite families of valuation domains, and using the

theorem on independence of valuations as given by Nagata in [10,

(11.11), page 38].) For k a field and x1, x2, . . . indeterminates over

k, we construct a chain Dn of the type discussed above, where Dn

has fraction field k(x1, . . . , xn) : Let D1 be the intersection of the
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DVRs (k[x1])(x
1

) = V1 and (k[x1])(x1−1) = W1. Let

M11 = (x1 − 1)D1 and P11 = x1D1.

denote the maximal ideals of D1. We construct D2 on the field

k(x1, x2) as an intersection of three valuation domains. We denote by

W1(x2) the valuation domain (k(x2)[x1])(x1−1), i.e., W1[x2] localized

at the extension of the maximal ideal of W1 to this polynomial ring.

This valuation domain W1(x2) is sometimes called the Gaussian or

trivial extension of W1 to the simple transcendental field extension

generated by x2. We define valuation domains W2 and V2 of rank 2

on k(x2, y2) both of which extend V1. Let N2 denote the maximal

ideal of V1(x2) and let

V2 = (k[x2])(x2) +N2 and W2 = (k[x2])(x2−1) +N2.

Define D2 := W1(x2) ∩W2 ∩ V2. Using [10, (11.11)], we see that D2

has two maximal ideals of height 2,

M22 := (x2 − 1)D2 and P22 := x2D2,

and two prime ideals of height one, M21 := (x1 − 1)D2 which is max-

imal, and P21 := N2 ∩D2 which contains x1 and is not maximal.

Observe that M22, P22 and P21 all have the property that their in-

tersection with D1 is P11.

We construct D3 on k(x1, x2, x3) as an intersection of four valua-

tion domains. Let N3 denote the maximal ideal of V2(x3). Define

V3 := (k[x3])(x3) +N3 and W3 = (k[x3])(x3−1) +N3.

Define D3 := W1(x2, x3) ∩W2(x3) ∩W3 ∩ V3. Using [10, (11.11)], we

see that D3 has two maximal ideals of height 3,

M33 := (x3 − 1)D3 and P33 := x3D3,

two prime ideals of height two, M32 := (x2 − 1)D3 which is maximal,
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and P32 := N3 ∩D3 which contains x2 and is not maximal, and two

prime ideals of height one, M31 := (x1 − 1)D3 which is maximal and

P31 which is the contraction to D3 of the height-one prime of V3.

Let t ≥ 3 be a fixed positive integer and assume for each positive

integer n ≤ t we have constructed n+ 1 valuation domains

W1(x2, . . . , xn),W2(x3, . . . , xn), . . . ,Wi(xi+1, . . . , xn), . . . ,Wn and Vn

on the field k(x1, . . . , xn) such that Wm has rank m for each m with

1 ≤ m ≤ n, Vn has rank n, and

Dn := W1(x2, . . . , xn) ∩W2(x3, . . . , xn) ∩ · · · ∩Wn ∩ Vn

has the following properties:

1. Dn has two maximal ideals of height n, Mnn = (xn − 1)Dn

and Pnn = (xn)Dn.

2. For each positive integer m < n, Dn has two prime ideal of

height m, Mnm = (xm − 1)Dn, which is maximal, and Pnm

which is nonmaximal.

3. For positive integers m ≤ n ≤ s ≤ t, the prime ideal Psm of Ds

intersects Dn in Pnm.

It is clear that we can continue the construction by defining t+ 2

valuation domains on k(x1, . . . , xt+1) as follows. Let Nt+1 denote the

maximal ideal of Vt(xt+1) and define Vt+1 = k[xt+1](xt+1) +Nt+1 and

Wt+1 = k[xt+1](xt+1−1) +Nt+1. For 1 ≤ i ≤ t, define the Gaussian ex-

tension Wi(xi+1, . . . , xt+1). Then Dt+1 defined as the intersection of

these t+ 2 valuation domains on k(x1, . . . , xt+1) gives the proper-

ties listed above for positive integers m ≤ n ≤ s ≤ t+ 1. Therefore,

by induction, we have the stated properties for all positive integers

m ≤ n ≤ s.
We define D = ∪∞n=1Dn. For each positive integer m, D has two

prime ideals of height m, Mm := ∪∞n=mMnm, which is maximal, and
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Pm := ∪∞n=mPnm, which is nonmaximal. D also has a unique maxi-

mal ideal M∞ := ∪∞n=1Pnn having infinite height. This completes the

construction of the example.

By [10, (11.11)], each of the Dn is a Bezout domain. Therefore D

is also a Bezout domain.

If we strengthen the assumption on the factors, we get stronger

conditions on the domain. In addition, we also get that the condition

on all nonzero ideals is equivalent to the condition on all principal

ideals.

Theorem 8 Let D be an integral domain. The following are equiv-

alent:

1. Each nonzero principal ideal aD of D can be written in the

form aD = Q1 ·Q2 · · · · ·Qn, where each Qi is primary and

the Qi’s are pairwise comaximal.

2. D has the following properties:

(a) D is one-dimensional.

(b) D has Noetherian spectrum.

3. Each nonzero ideal A of D can be written in the form A =

Q1 ·Q2 · · · · ·Qn, where each Qi is primary and the Qi’s are

pairwise comaximal.

Proof. (1) ⇒ (2): Let P be a nonzero prime ideal of D. If P is

not maximal, let M be a maximal ideal of D that properly contains

P and let a be a nonzero element of P . Let b be an element of M not

in P . Set x = ab. By hypothesis, xD = Q1 ·Q2 · · · · ·Qn, where each

Qi is primary and the Qi’s are pairwise comaximal. Now, P contains

x and so P contains some Q, say Q1. Let P1 =
√
Q1. Thus Q1 is P1-

primary and P1 ⊆ P . Also, because the Qi’s are pairwise comaximal,

M contains at most one minimal prime ideal of xD and that minimal
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prime must be P1. Localize at the maximal ideal M. This forces

xDM = Q1DM to be P1DM -primary. But this is impossible, for b is

not in P1DM , but ab = x is in xDM . If xDM were P1DM -primary,

then a must be in xDM . But a = x(ds ), for some d ∈ D, s ∈ D \M
implies x = x(ds )b, so s = db. This contradicts the fact that b is in

M . Hence, D is one dimensional.

To see that D has Noetherian spectrum, we first show that each

nonzero ideal of D is contained in only finitely maximal ideals. Let

a be a nonzero element of D. Then we can write aD = Q1 ·Q2 · · · · ·
Qn, where

√
Qi = Mi is prime; in fact, Mi is a maximal ideal since

D is one-dimensional. If M is any maximal ideal of D of which a is a

member, then M ⊇Mj for some j. Thus, {M1,M2, . . . ,Mn} is the

set of maximal ideals of D containing a. If A is any nonzero ideal

of D, then the set of maximal ideals containing A is a subset of the

set of maximal ideals containing any nonzero element inside A. In

particular, the set of maximal ideals containing A is finite.

To show that D has Noetherian spectrum,we must prove that D

satisfies the ascending chain condition on radical ideals. Thus, let

A1 $ A2 $ . . . $ be an ascending sequence of radical ideals. Now,
√
A1 = M1 ∩M2 ∩ · · · ∩Mk for some maximal ideals M1,M2, . . . ,Mk

of D. Since A1 $ A2, the set of maximal ideals of D that contain A2

is a proper subset of {M1,M2, . . . ,Mk}. It follows that the sequence

must be finite.

(2)⇒ (3) : Let A be a nonzero ideal of D, with M1,M2, . . .Mn

the maximal ideals containing A. That there are only finitely many

follows from the fact that D is one-dimensional and the fact that in a

ring with Noetherian spectrum, each nonzero ideal has only finitely

many minimal primes. Set Qi = ADMi ∩D. Then Qi has radical Mi

and A is the intersection of the Qi’s. Since the Mi’s are maximal,

the Qi’s are primary and comaximal. So, A is also the product of
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the Qi’s.

(3)⇒ (1) : This is obvious.

Finally, we treat the case where the Q’s are prime powers.

Theorem 9 Let D be an integral domain. The following are equiv-

alent:

1. Each nonzero principal ideal aD of D can be written in the

form aD = Q1 ·Q2 · · · · ·Qn, where each Qi is a prime power

and the Qi’s are pairwise comaximal.

2. D has the following properties:

(a) D is one-dimensional.

(b) D is Noetherian.

(c) D is integrally closed.

3. Each nonzero ideal A of D can be written as a product of prime

ideals.

4. D is a Dedekind domain.

5. Each nonzero ideal A of D can be written in the form A =

Q1 ·Q2 · · · · ·Qn, where each Qi is a prime power and the Qi’s

are pairwise comaximal.

Proof. The equivalence of properties (2) - (5) is standard, see for

example [4, Theorem 37.8]. In particular, (3)⇒ (4) is a theorem of

Matsusita [6, Page 68]. It is obvious that (5)⇒ (1) Thus it suffices

to show:

(1)⇒ (2) : We first prove that D is one-dimensional. Let M be a

maximal ideal of D and suppose there exists a nonzero prime ideal

P properly contained in M . Let x ∈M , x 6∈ P and write xD =

P e11 · · ·P enn , where the Pi are pairwise comaximal prime ideals. It

follows that the Pi are invertible and M contains one, and only one,

of the Pi, say P1. Because x 6∈ P , P1 is not contained in P . Let y
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be a nonzero element of P and write yD = N
f1
1 · · ·N

fm
m , where the

Nj are pairwise comaximal prime ideals. Thus the Nj are invertible

and P contains one, and only one, of the Nj , say N1. By Theo-

rem 1, the prime ideals contained in M are linearly ordered with

respect to inclusion. Since N1 ⊆ P , we have N1 ( P1. It follows that

N1DP1 ( P1DP1 are nonzero principal prime ideals of DP1 . This is

a contradiction. (Suppose R is a quasilocal domain with principal

maximal ideal xR and that yR is a principal prime ideal with yR

strictly smaller than xR. Write y = xz for some z ∈ R. Since yR is

a prime ideal and x 6∈ yR, it follows that z ∈ yR, say z = yr. Then

y = xyr, so y(1− xr) = 0. Since 1− xr is a unit of R, y = 0).

Let M be a maximal ideal of D and let a be a nonzero element

of M . Then aD = Q1 ·Q2 · · · · ·Qn, where each Qi = Mei
i for some

maximal ideal Mi of D. Thus, M = Mj for some j. Since a product

of ideals is invertible if and only if each factor is invertible, it follows

that M is invertible. In particular, M is finitely generated. So, all

prime ideals of D are finitely generated and D is Noetherian by

Cohen’s Theorem [6, Theorem 8]. Finally, MDM is principal since

M is invertible. Therefore, each prime ideal of the quasi-local ring

DM is principal and by an analog to Cohen’s Theorem, [6, Page 8]

DM is a principal ideal domain. It follows that D is integrally closed.

This paper was written, composed, and typeset electronically. The

difficulty posed by two authors working in different locations and us-

ing different interfaces to Tex would have been insurmontable with-

out the help of Fred Richman and to Fred we offer our sincere thanks.
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