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Abstract. Suppose a is a nonzero nonunit of a Noetherian integral domain R. An

interesting construction introduced by Ray Heitmann addresses the question of how

ring-theoretically to adjoin a transcendental power series in a to the ring R. We apply

this construction, and its natural generalization to finitely many elements, to exhibit

Noetherian extension domains of R inside the (a)-adic completion R∗ of R. Suppose

τ1, . . . , τs ∈ aR∗ are algebraically independent over K, the field of fractions of R.

Starting with U0 := R[τ1, . . . , τs], there is a natural sequence of nested polynomial

rings Un between R and A := K(τ1, . . . , τs) ∩ R∗. It is not hard to show that if

U := ∪∞n=0Un is Noetherian, then A is a localization of U and R∗[1/a] is flat over

U0. We prove, conversely, that if R∗[1/a] is flat over U0, then U is Noetherian and
A := K(τ1, . . . , τs) ∩ R∗ is a localization of U . Thus the flatness of R∗[1/a] over U0

implies the intersection domain A is Noetherian.

1. Introduction. Suppose a is a nonzero nonunit of a Noetherian integral domain

R. The (a)-adic completion R∗ of R is isomorphic to the ring R[[x]]/(x − a) [N,

(17.5), page 55]. Thus elements of the (a)-adic completion may be regarded as

formal power series in a. Of course if R is already complete in its (a)-adic topol-

ogy, then R = R∗, but often it is the case that there are elements of R∗ that are

transcendental over R. An interesting construction first introduced by Ray Heit-

mann in [H, page 126] addresses the question of how ring-theoretically to adjoin a

transcendental (over R) power series in a to the ring R. We have made use of this

construction of Heitmann in [HRW3] in a local or semilocal context. Our purpose

here is to consider this construction in the more general context of an arbitrary

Noetherian integral domain.
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There are numerous articles in the literature that have relevance for the building

of Noetherian domains inside an ideal-adic completion, for example [BR1], [BR2],

[HRS], [H1], [H2], [H3], [L], [N2], [O1], [O2], [R1], [R2], [R3], and [W].

Let R be a Noetherian integral domain with field of fractions K and let a be a

nonzero nonunit of R. We are interested in the structure of certain intermediate

integral domains between R and R∗ := ̂(R, (a)) = R[[x]]/(x − a), the (a)-adic

completion of R. We are particularly interested in domains of the form A := L∩R∗,
where L is an intermediate field between K and the total ring of fractions of R∗.

It is often difficult to compute this intersection ring A. Thus we seek conditions in

order that A be realizable as a localization of a directed union of polynomial ring

extensions of R.

This intersection construction inside the completion of R with respect to a prin-

cipal ideal yields interesting Noetherian rings which are directed unions of localized

polynomial rings, as we see below. By contrast, taking the analogous construc-

tion inside the completion with respect to a maximal ideal, even of an excellent

local domain seems less likely to give Noetherian intersection domains. In [HRW1],

it is shown for a countable excellent local domain (R,m) of dimension at least

two that there exist infinitely many algebraically independent elements τ1, τ2, . . .

in the m-adic completion R̂ of R such that the corresponding intersection do-

main is a localized polynomial ring in infinitely many variables over R; that is,

R̂ ∩K(τ1, τ2, . . . ) = R[τ1, τ2, . . . ](m,τ1,τ2,... ).

In [HRW2], [HRW3] and the present paper, we study the following element-wise

form of the problem. Let τ1, . . . , τs ∈ aR∗ be elements which are algebraically

independent over K. Starting with U0 := R[τ1, . . . , τs], we define a sequence of

nested polynomial rings Un in s variables over R inside A := K(τ1, . . . , τs)∩R∗. In

[HRW3] we consider in the case where R is a semilocal Noetherian integral domain

and a is an element of the Jacobson radical of R the condition that the embedding

U0 → R∗[1/a] is flat. Our goal here is to examine flatness of the embedding

U0 → R∗[1/a] in a more general context, and to prove the following theorem.1

Theorem 1.1. Suppose R is a Noetherian domain, a ∈ R is a nonzero nonunit,

and τ1, . . . , τs are elements of the (a)-adic completion R∗ of R that are algebraically

1This result generalizes [HRW3, Theorem 2.12].
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independent over R.2 Then the following conditions are equivalent:

(1) The ring R∗[1/a] is flat over U0 = R[τ1, . . . , τs].

(2) The directed union U := ∪∞n=0Un is Noetherian.3

Moreover, if these equivalent conditions hold, then the integral domain A :=

K(τ1, . . . , τs) ∩R∗ is a localization of U , and hence A is Noetherian.

Remark 1.2. An example given in [HRW3, (4.4)] shows that it is possible for A to

be a localization of U and yet for A, and therefore also U , to fail to be Noetherian.

Thus the equivalent conditions of (1.1) are not implied by the property that A is a

localization of U .

We present in (2.5) an example that is a modification of [HRW2, Example 2.1]

to show that A being Noetherian does not imply that U is Noetherian.

The following diagram displays the situation concerning possible implications

between A being a localization of U and A or U being Noetherian:

R∗[1/a] is flat over U0 = R[τ1, . . . , τs] U Noetherian

A is a localization of U A Noetherian

2. The general setting.

(2.1) Let R be a Noetherian integral domain of dimension d > 0 with fraction

field K. Let a be a nonzero element nonunit of R, let R∗ := ̂(R, (a)) be the

(a)-adic completion of R and let R∗a := R∗[1/a]. Suppose τ1, . . . , τs ∈ aR∗ are

regular elements4 of R∗ that are algebraically independent over K. We consider

the polynomial ring

U0 := R[τ1, . . . , τs].

For every γ ∈ R∗ and every n > 0, we define the nth-endpiece γn with respect

2We say that elements are algebraically independent over an integral domain if they are alge-

braically independent over its fraction field.
3Heitmann in [H, page 126] considers the case where there is one transcendental element τ

and defines the corresponding extension U to be a simple PS-extension of R for a. Heitmann

proves in this case that a certain monomorphism condition on a sequence of maps is equivalent

to U being Noetherian [H, Theorem 1.4].
4We say an element of a ring is a regular element if it is not a zero divisor.
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to a of γ to be

(2.1.1) γn :=
∞∑

j=n+1

cja
j−n, where γ :=

∞∑
j=1

cja
j with each cj ∈ R.

In particular, we represent each of the τi by a power series expansion in a; we use

these representations to obtain for each positive integer n the nth-endpieces τin and

the corresponding nth-polynomial ring Un: For 1 ≤ i ≤ s, and τi :=
∑∞
j=1 rija

j ,

where the rij ∈ R, τin :=
∑∞
j=n+1 rija

j−n, Un := R[τ1n, . . . , τsn], for each n ∈ N.
We have a birational inclusion of polynomial rings Un ⊂ Un+1. We define

(2.1.2) U := ∪∞n=0Un = lim−→Un and A := K(τ1, . . . , τs) ∩R∗.

It is readily seen that A is a birational extension of U . We say that the τi have

good limit-intersecting behavior if A is a localization of U .

We observe the following properties of (a)-adic completions and an implication

of this concerning good limit-intersecting behavior.

Proposition 2.2 (cf. [HRW2],[HRW3, (2.2)]). Assume the notation and setting

of (2.1), and let U∗ and A∗ denote the (a)-adic completions of U and A. Then

(1) akU = akA ∩ U = akR∗ ∩ U for each positive integer k.

(2) U∗ = A∗ = R∗, so R/aR = U/aU = A/aA = R∗/aR∗.

(3) If U is Noetherian, then R∗ is flat over U and A is the localization of U at

the multiplicative system 1 + aU of U .

Proof. We have R ⊆ U ⊆ A ⊆ R∗. Since R is Noetherian, R∗ is flat over R

[M1, Theorem 8.8, page 60]. Moreover, akR is closed in the (a)-adic topology

on R, so we have akR∗ ∩ R = akR for each positive integer k [ZS, Theorem 8,

page 261]. Furthermore, A = R∗ ∩ K(τ1, . . . , τs) implies akA = akR∗ ∩ A. It is

clear that akU ⊆ akR∗∩U , thus for (1) and (2) it suffices to show akR∗∩U ⊆ akU .

Moreover, if aR∗∩U = aU , it follows that akR∗∩U = akR∗∩aU = a(ak−1R∗∩U),

and by induction we see that akR∗ ∩ U = akU . Thus we show aR∗ ∩ U ⊆ aU .

Let g ∈ aR∗∩U . Then there is a positive integer n with g ∈ Un = R[τ1n, . . . , τsn].

Write g = r0 + g0 where g0 ∈ (τ1n, . . . , τsn)Un and r0 ∈ R. From the definition of

τin, we have τin = aτin+1 + aina, where ain ∈ R, for each i with 1 ≤ i ≤ s. Thus

r0 ∈ aR∗ ∩ R = aR, τinUn ⊆ aUn+1 and g ∈ aU . This completes the proof of (1)
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and (2). If U is Noetherian, then U∗ = R∗ is flat over U . Let S be the multiplicative

system 1 + aU and let B = S−1U . Then B is Noetherian, the (a)-adic completion

of B is R∗ and R∗ is faithfully flat over B [M1, Theorem 8.14, page 62]. Therefore

B = K(τ1, . . . , τs) ∩R∗ = A. �

With the notation and setting of (2.1), the representation of the τi as power

series in a with coefficients in R is, in general, not unique. However, as we observe

in (2.3), the rings U and Un are uniquely determined by the τi.

Proposition 2.3 (cf. [HRW3, (2.3)]). Assume the notation and setting of (2.1).

Then U and the Un are independent of the representation of the τi as power series

in a with coefficients in R.

Proof. For 1 ≤ i ≤ s, assume that τi and ωi = τi have representations

τi =

∞∑
j=1

aija
j and ωi =

∞∑
j=1

bija
j ,

where each aij , bij ∈ R. We define the nth-endpieces τin and ωin as in (2.1.1):

τin =

∞∑
j=n+1

aija
j−n and ωin =

∞∑
j=n+1

bija
j−n.

Then we have

τi = Σ∞j=1aija
j = Σnj=1aija

j + anτin = Σ∞j=1bija
j = Σnj=1bija

j + anωin = ωi.

Therefore, for 1 ≤ i ≤ s and each positive integer n,

anτin−anωin = Σnj=1bija
j −Σnj=1aija

j , and so τin−ωin =
Σnj=1(bij − aij)aj

an
.

Since Σnj=1(bij − aij)aj ∈ R is divisible by an in R∗ and since anR = R ∩ anR∗

because anR is closed in the (a)-adic topology, it follows that an divides the sum

Σnj=1(bij−aij)aj in R. Therefore τin−ωin ∈ R. It follows that Un and U = ∪∞n=1Un

are independent of the representation of the τi. �

Remark 2.4. With notation as in (2.1), if the embedding U0 = R[τ1, . . . , τs] →
R∗[1/a] is flat, then every nonzero element of U0 is a regular element of R∗.
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Example 2.5. (cf. [HRW2, Example 2.1]) In Q[[x, y]], the power series ring in the

two variables x and y over the rational numbers, let γ := ex−1 and τ := ey−1; take

γn to be the nth-endpiece of γ with respect to x and take τn to be the nth-endpiece

of τ with respect to y, as described in (2.1). Set R := ∪n∈NQ[x, y, γn](x,y,γn). Then

R = Q[y](y)[[x]] ∩ Q(x, y, γ) is an excellent two-dimensional regular local domain.

Now define U in the (y)-adic completion of R using the endpieces τn as above. Then

U ⊇ V := ∪n∈NQ[x, y, γn, τn]. The ring A := Q[[x, y]] ∩ Q(x, y, γ, τ) is Noetherian

but is different from B := ∪Q[x, y, γn, τn](x,y,γn,τn). The ring B is the localization

of U at the multiplicative system 1+yU , and the rings B and U are not Noetherian.

It follows that A is not a localization of U .

Proof. Consider the element θ = γ−τ
x−y ∈ A. If θ is an element of B, then

γ − τ ∈ (x− y)B ∩ V = (x− y)V.

Now

V = ∪n∈NQ[x, y, γn, τn] ⊆ Q[x, y, γ, τ ][1/x, 1/y] ⊆ Q[x, y, γ, τ ](x−y),

and so

γ − τ ∈ (x− y)Q[x, y, γ, τ ](x−y) ∩Q[x, y, γ, τ ] = (x− y)Q[x, y, γ, τ ],

but this contradicts the fact that x, y, γ, τ are algebraically independent over Q.

If U were Noetherian, then B would be Noetherian. But the maximal ideal of B

is (x, y)B, so if B were Noetherian, then it would be a regular local domain with

completion Q[[x, y]]. Since the completion of a local Noetherian ring is a faithfully

flat extension of it, and since the fraction field of B is Q(x, y, γ, τ), then B would

equal A.

That A is Noetherian follows from [V, Proposition 3]. If A were a localization of

U , then A would be a localization of B. But each of A and B has a unique maximal

ideal and the maximal ideal of A contains the maximal ideal of B. Therefore B ( A

implies that A is not a localization of B. �

3. The proof of the main theorem.

Proof of Theorem 1.1. Assume that U is Noetherian. By (2.2), the (a)-adic com-

pletion U∗ of U is equal to R∗. Since U is Noetherian, U∗ = R∗ is flat over
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U [M1, Theorem 8.8]. Therefore the localization R∗[1/a] is flat over U . Since

U [1/a] = U0[1/a], the localization R∗[1/a] is also flat over U0.

To prove the converse we use results of Heitmann in [H1, Theorem 1.4].

First we show in (3.1) that the flatness condition for R∗[1/a] over U0 behaves

well under certain residue class formations.

Proposition 3.1. Let R be a Noetherian domain, let a be a nonzero nonunit of

R, let R∗ be the y-adic completion of R and let τ1, . . . , τs ∈ aR∗ be algebraically

independent over R. Suppose that R∗a := R∗[1/a] is flat over U0, using the notation

of (2.1) and that Q is a prime ideal of R with a /∈ Q. Assume that Q is the

contraction of a prime ideal of R∗. Let ¯ denote image in R∗a/QR
∗
a and let (R/Q)∗

denote the (ā)-adic completion of R/Q. Then (R/Q)∗ā := (R/Q)∗[1̄/ā] is flat over

(R/Q)[τ̄1, . . . , τ̄s].

Proof. The (ā)-adic completion (R/Q)∗ ofR/Q is canonically isomorphic to R∗/QR∗.

Therefore τ̄1, . . . , τ̄s are regular elements of (R/Q)∗. We show τ̄1, . . . , τ̄s are alge-

braically independent over R/Q. Since R[τ1, . . . , τs] −→ R∗a is flat, a 6∈ Q, and Q is

the contraction of a prime ideal of R∗, we have QR[τ1, . . . , τs] = QR∗a∩R[τ1, . . . , τs].

Thus

R[τ1, . . . , τs]/(QR
∗
a ∩R[τ1, . . . , τs]) ∼= (R/Q)[τ̄1, . . . , τ̄s]

is a polynomial ring in s variables τ̄1, . . . , τ̄s over R/Q. Therefore τ̄1, . . . , τ̄s are

algebraically independent over R/Q.

We show flatness of the map:

φ̄ : (R/Q)[τ̄1, . . . , τ̄s] −→ R∗a/QR
∗
a = (R/Q)∗ā.

Let P̄ be a prime ideal of R∗/QR∗ with ā /∈ P̄ . The ideal P̄ lifts to a prime ideal

P of R∗ with a /∈ P and QR∗ ⊆ P . By assumption the map

φP : R[τ1, . . . , τs] −→ R∗P

is flat. The map on the residue class rings:

φ̄P̄ : (R/Q)[τ̄1, . . . , τ̄s] −→ (R∗/QR∗)P̄

is obtained from φP by tensoring with (R/Q)[τ1, . . . , τs] over the ring R[τ1, . . . , τs].

Hence φ̄ is flat. �
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Theorem 3.2. Assume the notation and setting of (2.1). Also assume that s =

1, τ := τ1 and that the localization R∗[1/a] is flat over U0 = R[τ ]. Then U is

Noetherian and A = R∗ ∩K(τ) is a localization of U .

We use the same proof as in [H1, Theorem 1.4] and prove first the following

lemma.

Lemma 3.3. With notation as in Theorem 3.2, if P is a nonzero prime ideal of

U such that P ∩ R = (0), then there exists f ∈ P , r ∈ R and a positive integer N

such that P = (fU :U ra
N ).

Proof. The localization D := (R − {0})−1U of U at the nonzero elements of R is

also a localization of the polynomial ring U0 := R[τ ]. Hence PD is a a principal

maximal ideal of D and there exists a polynomial f ∈ R[τ ] such that PD = fD.

We use the fact that U is the directed union of the polynomial rings Un := R[τn],

U = ∪∞n=0Un. Let Pn = P ∩ Un. Since DPD = (U0)P0
and U0 is Noetherian, there

exists r ∈ R such that P0 = (fU0 :U0
r). Also for g ∈ U there exists a positive

integer b(g), depending on g, such that ab(g)g ∈ U0. Hence for g ∈ P we have

rab(g)g ∈ fU0.

The Artin-Rees Lemma [N1, (3.7)] applied to the ideals aR∗ and fR∗ of the

Noetherian ring R∗ implies the existence of a positive integer N such that for

m ≥ N we have

fR∗ ∩ (aR∗)m = (aR∗)m−N ((fR∗ ∩ (aR∗)N ) = (am−N )R∗(fR∗ ∩ aNR∗).

We may assume that b(g) ≥ N .

Suppose g ∈ P . Then rab(g)g ∈ fU0 ⊆ fU , so

rab(g)g ∈ fR∗ ∩ ab(g)R∗ = ab(g)−NR∗(fR∗ ∩ aNR∗).

Since a is not a zero-divisor in R∗, it follows that raNg ∈ fR∗ ∩ aNR∗. Thus

raNg = ft, where t ∈ R∗. Since we also have rab(g)g ∈ fU , it follows that

ab(g)−Nft ∈ fU , and therefore ab(g)−N t ∈ U , as f is not a zero-divisor in R∗.

Therefore ab(g)−N t ∈ ab(g)−NR∗ ∩ U = ab(g)−NU by (2.2.1) and so t ∈ U . Hence

for every g ∈ P we have g ∈ (fU :U raN). It follows that P = (fU :U raN). �

As in [H1, Lemma 1.5], we have:
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Lemma 3.4. With notation as in Theorem 3.2, if each prime ideal P of U such

that P ∩R 6= (0) is finitely generated, then U is Noetherian.

Proof. By a Theorem of Cohen [N1, (3.4)], it suffices to show each P ∈ Spec(U)

such that P ∩ R = (0) is finitely generated. Let P be a nonzero prime ideal of

U such that P ∩ R = (0). Since the localization of U at the nonzero elements of

R is also a localization of the polynomial ring U0 := R[τ ], every prime ideal of U

properly containing P has a nonzero intersection with R. Therefore the hypothesis

implies that U/P is Noetherian. By (3.3), there exist r ∈ R and f ∈ P such

that P = (fU :U raN). Since raN is a nonzero element of R, every prime ideal

of U containing raN is finitely generated, so U/raNU is Noetherian. Therefore

U/(P ∩ raNU) is Noetherian [N1, (3.16)]. Since raN /∈ P and P is prime, we have

raNU ∩ P = raNP . Therefore U/raNP is Noetherian. We have raNP ⊆ fU ⊆ P .

Hence U/fU , as a homomorphic image of U/raNP , is Noetherian, and P/fU is

finitely generated. It follows that P is finitely generated. �

Proof of Theorem 3.2. Suppose U is not Noetherian and let Q ∈ Spec(R) be max-

imal with respect to being the contraction to R of a non-finitely generated prime

ideal of U . Since R/aR = U/aU = R∗/aR∗ by (2.2), we have a /∈ Q. Since

U = ∪∞n=0Un and QUn is prime, we have QU is prime in U . We claim that Q is the

contraction of a prime ideal of R∗, for otherwise we have (Q, a)R = R. But this

means that the image of a in U/QU is a unit which implies that U/QU = U0/QU0

is Noetherian, and this implies that P is finitely generated. Therefore Q is the

contraction of a prime of R∗, and (3.1) implies that, passing to the image τ̄ of

τ in U/QU , the localization (R/Q)∗ā is flat over (R/Q)[τ̄ ]. But Lemma 3.4 then

implies that U/QU is Noetherian. This contradicts the existence of a non-finitely

generated prime ideal of U lying over Q in R. We conclude that U is Noetherian.

Therefore U∗ = R∗ is flat over U and if S is the multiplicative system 1+ aU , then

S−1U = R∗ ∩K(τ). �

Remark 3.5. The proof of Theorem 3.2 is essentially due to Ray Heitmann. In

his paper [H1] Heitmann defines simple PS-extensions. For a regular element x

in a ring R and a formal power series in x transcendental over R, a simple PS-

extension of R for x is an infinite direct union of simple transcendental extensions

of R. If R is Noetherian and T is a simple PS-extension of R, Heitmann proves in
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[H1, Theorem 1.4] that a certain monomorphism condition is equivalent to T being

Noetherian. Heitmann’s monomorphism condition insures that the element f in

the proof of Lemma 3.3 is a regular element in R∗. In our situation our flatness

condition on the embedding U0 −→ R∗a, and hence on U −→ R∗a, implies the

regularity of f in R∗. Thus Proposition 3.1 yields that if s = 1 and the embedding

U0 −→ R∗a is flat, then the ring U = lim−→R[τn] is a simple PS-extension satisfying

the monomorphism condition of Heitmann. In view of Theorem 1.1, Heitmann’s

monomorphism condition on the PS-extension determined by τ is equivalent to τ

yielding a flat extension. The flat extension concept however extends to more than

one element τ .

Completion of Proof of Theorem 1.1. If U is Noetherian, we have already shown

that R∗[1/a] is flat over U0. Assume, conversely, that R∗[1/a] is flat over U0 =

R[τ1, . . . , τs]. It follows that R∗[1/a] is flat over R[τ1]. By Theorem 3.2, U(1),

the directed union ring constructed with respect to τ1 in (2.1) is Noetherian and

R∗ ∩K(τ1) is a localization of U(1). It also follows that U(1)∗[1/a] = R∗[1/a] is

flat over U(1)[τ2, . . . , τs] (cf. [HRW2, Proposition 5.10]). Hence a simple induction

argument implies that U is Noetherian. Hence U∗ = R∗ is flat over U and A is a

localization of U . �
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74 (1979), 123-135.

[R3] , On rings with low dimensional formal fibres, J.Pure Appl.Algebra 71 (1991),

287-296.
[V] P. Valabrega, On two-dimensional regular local rings and a lifting problem, Annali della

Scuola Normale Superiore di Pisa 27 (1973), 1-21.

[W] D. Weston, On descent in dimension two and non-split Gorenstein modules, J. Algebra

118 (1988), 263-275.

[ZS] O. Zariski and P. Samuel, Commutative Algebra vol II, Van Nostrand, Princeton, NJ,

1960.

Department of Mathematics, Purdue University, West Lafayette, IN 47907-1395

Department of Mathematics, Michigan State University, East Lansing, MI 48824-

1027

Department of Mathematics and Statistics, University of Nebraska, Lincoln, NE

68588-0323


