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This article is dedicated to Robert Gilmer, an outstanding commutative
algebraist, scholar and teacher. It relates to his work in ideal theory.

1 Introduction and Background

In this article we study the nested mixed polynomial/power series rings

A := k[x, y] ↪→ B := k[[y]] [x] ↪→ C := k[x] [[y]] ↪→ E := k[x, 1/x] [[y]], (1)

where k is a field and x and y are indeterminates over k. In Equation 1 the
maps are all flat. Also we consider

C ↪→ D1 := k[x] [[y/x]] ↪→ · · · ↪→ Dn := k[x] [[y/xn]] ↪→ · · · ↪→ E. (2)

With regard to Equation 2, for n a positive integer, the map C ↪→ Dn is
not flat, but Dn ↪→ E is a localization followed by an adic completion of a
Noetherian ring and therefore is flat. We discuss the spectra of these rings
and consider the maps induced on the spectra by the inclusion maps on the
rings. For example, we determine whether there exist nonzero primes of one of
the larger rings that intersect a smaller ring in zero. We were led to consider
these rings by questions that came up in two contexts.

The first motivation is from the introduction to the paper [AJL] by Alonzo-
Tarrio, Jeremias-Lopez and Lipman: If a map between Noetherian formal
schemes can be factored as a closed immersion followed by an open one, can
this map also be factored as an open immersion followed by a closed one? This
is not true in general. As mentioned in [AJL], Brian Conrad observed that a
counterexample can be constructed for every triple (R, x, p), where
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(1) R is an adic domain, that is, R is a Noetherian domain that is separated
and complete with respect to the powers of a proper ideal I.

(2) x is a nonzero element of R such that the completion of R[1/x] with re-
spect to the powers of IR[1/x], denoted S := R{x}, is an integral domain.

(3) p is a nonzero prime ideal of S that intersects R in (0).

The composition R → S → S/p determines a map on formal spectra
Spf (S/p) → Spf (S) → Spf (R) that is a closed immersion followed by an
open one. To see this, recall that a surjection such as S → S/p of adic rings
gives rise to a closed immersion Spf (S/p)→ Spf (S) while a localization, such
as that of R with respect to the powers of x, followed by the completion of
R[1/x] with respect to the powers of IR[1/x] to obtain S gives rise to an open
immersion Spf (S)→ Spf (R) [EGA, (10.2.2)].

The map Spf (S/p) → Spf (R) cannot be factored, however, as an open
immersion followed by a closed one. This is because a closed immersion into
Spf (R) corresponds to a surjective map of adic rings R→ R/J , where J is an
ideal of R [EGA, page 441]. Thus if the immersion Spf (S/p)→ Spf (R) fac-
tored as an open immersion followed by a closed one, we would have R-algebra
homomorphisms from R → R/J → S/p, where Spf (S/p) → Spf (R/J) is
an open immersion. Since p ∩ R = (0), we must have J = (0). This im-
plies Spf (S/p) → Spf (R) is an open immersion, that is, the composite map
Spf (S/p) → Spf (S) → Spf (R), is an open immersion. But also Spf (S) →
Spf (R) is an open immersion. It follows that Spf (S/p)→ Spf (S) is both open
and closed. Since S is an integral domain this implies Spf (S/p) ∼= Spf (S).
This is a contradiction since p is nonzero.

An example of such a triple (R, x, p) is described in [AJL]: For w, x, y, z
indeterminates over a field k, set R := k[w, x, z] [[y]], S := k[w, x, 1/x, z] [[y]].
Notice that R is complete with respect to yR and S is complete with respect
to yS. An indirect proof is given in [AJL] that there exist nonzero primes p
of S for which p∩R = (0). In Proposition 4.5 below we give a direct proof of
this fact.

A second motivation is from a question raised by Mel Hochster: “Can one
describe or somehow classify the local maps R ↪→ S of complete local domains
R and S such that every nonzero prime ideal of S has nonzero intersection
with R?” In [HRW2] we study this question and define:

Definition 1.1. For R and S integral domains with R a subring of S we say
that S is a trivial generic fiber extension of R, or a TGF extension of R, if
every nonzero prime ideal of S has nonzero intersection with R.

In some correspondence to Lipman regarding closed and open immer-
sions, Conrad asked: “Is there a nonzero prime ideal of E := k[x, 1/x] [[y]]
that intersects C = k[x] [[y]] in zero?” If there were such a prime ideal, then
C := k[x] [[y]] ↪→ E := k[x, 1/x] [[y]] would be a simpler counterexample to
the assertion that a closed immersion followed by an open one also has a fac-
torization as an open immersion followed by a closed one. In the terminology
of Definition 1.1, one can ask:
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Question 1.2. Let x and y be indeterminates over a field k. Is C :=
k[x] [[y]] ↪→ E := k[x, 1/x] [[y]] a TGF extension?

We show in Proposition 2.6.2 below that the answer to Question 1.2 is
“yes”. This is part of our analysis of the prime spectra of A, B, C, Dn and E,
and the maps induced on these spectra by the inclusion maps on the rings.

The following example is a local map of the type described in Hochster’s
question.

Example 1.3. Let x and y be indeterminates over a field k and consider the
extension R := k[[x, y]] ↪→ S := k[[x]] [[y/x]]. To see this extension is TGF, it
suffices to show P∩R 6= (0) for each P ∈ Spec S with ht P = 1. This is clear if
x ∈ P , while if x 6∈ P , then k[[x]]∩P = (0), and so k[[x]] ↪→ R/(P∩R) ↪→ S/P
and S/P is finite over k[[x]]. Therefore dim R/(P∩R) = 1, and so P∩R 6= (0).

Remarks 1.4. (1) The extension k[[x, y]] ↪→ k[[x, y/x]] is, up to isomorphism,
the same as the extension k[[x, xy]] ↪→ k[[x, y]].

(2) We show in [HRW2] that the extension R := k[[x, y, xz]] ↪→ S :=
k[[x, y, z]] is not TGF.

2 Trivial generic fiber (TGF) extensions and prime
spectra

The following two propositions about trivial generic fiber extensions from
[HRW2] are useful and straightforward to check.

Proposition 2.1. Let R ↪→ S be an injective map where R and S are integral
domains. Then the following are equivalent:

(1) S is a TGF extension of R.
(2) Every nonzero element of S has a nonzero multiple in R.
(3) For U = R \ {0}, U−1S is a field.

Proposition 2.2. Let R ↪→ S and S ↪→ T be injective maps where R, S and
T are integral domains.

(1) If R ↪→ S and S ↪→ T are TGF extensions, then so is R ↪→ T . Equivalently
if R ↪→ T is not TGF, then at least one of the extensions R ↪→ S or S ↪→ T
is not TGF.

(2) If R ↪→ T is TGF, then S ↪→ T is TGF.
(3) If the map Spec T → Spec S is surjective, then R ↪→ T is TGF implies

R ↪→ S is TGF.

More information about TGF extensions is in [HRW1] and [HRW2].
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Remarks 2.3. Let R be a commutative ring and let R[[y]] denote the formal
power series ring in the variable y over R. Then

(1) Each maximal ideal of R[[y]] is of the form (m, y)R[[y]] where m is a
maximal ideal of R. Thus y is in every maximal ideal of R[[y]].

(2) If R is Noetherian with dim R[[y]] = n and x1, . . . , xm are independent
indeterminates over R[[y]], then y is in every height n+m maximal ideal
of the polynomial ring R[[y]] [x1, . . . , xm].

Proof. Item (1) follows from [N, Theorem 15.1]. For item (2), let m be a
maximal ideal of R[[y]] [x1, . . . , xm] with ht (m) = n + m. By [K, Theorem
39], ht (m ∩ R[[y]]) = n ; thus m ∩ R[[y]] is maximal in R[[y]], and so, by
item (1), y ∈m. ut

Proposition 2.4. Let n be a positive integer, let R be an n-dimensional
Noetherian domain, let y be an indeterminate over R, and let q be a prime
ideal of height n in the power series ring R[[y]]. If y 6∈ q, then q is contained
in a unique maximal ideal of R[[y]].

Proof. The assertion is clear if q is maximal. Otherwise S := R[[y]]/q has
dimension one. Moreover, S is complete with respect to the yS-adic topology
[M, Theorem 8.7] and every maximal ideal of S is a minimal prime of the prin-
cipal ideal yS. Hence S is a complete semilocal ring. Since S is also an integral
domain, it must be local by [M, Theorem 8.15]. Therefore q is contained in a
unique maximal ideal of R[[y]]. ut

In Section 3 we use the following corollary to Proposition 2.4.

Corollary 2.5. Let R be a one-dimensional Noetherian domain and let q be
a height-one prime ideal of the power series ring R[[y]]. If q 6= yR[[y]], then
q is contained in a unique maximal ideal of R[[y]].

Proposition 2.6. Consider the nested mixed polynomial/power series rings

A := k[x, y] ↪→ B := k[[y]] [x] ↪→ C := k[x] [[y]]

↪→ D1 := k[x] [[y/x]] ↪→ D2 := k[x] [[y/x2]] ↪→ · · ·
↪→ Dn := k[x] [[y/xn]] ↪→ · · · ↪→ E := k[x, 1/x] [[y]],

where k is a field and x and y are indeterminates over k. Then

(1) If S ∈ {B,C,D1, D2, · · · , Dn, · · · , E}, then A ↪→ S is not TGF.
(2) If {R,S} ⊂ {B,C,D1, D2, · · · , Dn · · · , E} are such that R ⊆ S, then

R ↪→ S is TGF.
(3) Each of the proper associated maps on spectra fails to be surjective.
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Proof. For item (1), let σ(y) ∈ yk[[y]] be such that σ(y) and y are algebraically
independent over k. Then (x− σ(y))S ∩A = (0), and so A ↪→ S is not TGF.

For item (2), observe that every maximal ideal of C, Dn or E is of height
two with residue field finite algebraic over k. To showR ↪→ S is TGF, it suffices
to show q ∩ R 6= (0) for each height-one prime ideal q of S. This is clear if
y ∈ q. If y 6∈ q, then k[[y]] ∩ q = (0), and so k[[y]] ↪→ R/(q ∩ R) ↪→ S/q are
injections. By Corollary 2.5, S/q is a one-dimensional local domain. Since the
residue field of S/q is finite algebraic over k, it follows that S/q is finite over
k[[y]]. Therefore S/q is integral over R/(q ∩ R). Hence dim (R/(q ∩ R) = 1
and so q ∩R 6= (0).

For item (3), observe that xDn is a prime ideal of Dn and x is a unit of
E. Thus Spec E → Spec Dn is not surjective. Now, considering C = D0 and
n > 0, we have xDn∩Dn−1 = (x, y/xn−1)Dn−1. Therefore xDn−1 is not in the
image of the map Spec Dn → Spec Dn−1. The map from Spec C → Spec B
is not onto, because (1 + xy) is a prime ideal of B, but 1 + xy is a unit in C.
Similarly Spec B → Spec A is not onto, because (1 + y) is a prime ideal of A,
but 1 + y is a unit in B. This completes the proof. ut

Question/Remarks 2.7. Which of the Spec maps of Proposition 2.6 are
one-to-one and which are finite-to-one?

(1) For S ∈ {B,C,D1, D2, · · · , Dn, · · · , E}, the generic fiber ring of the map
A ↪→ S has infinitely many prime ideals and has dimension one. Every
height-two maximal ideal of S contracts in A to a maximal ideal. Every
maximal ideal of S containing y has height two. Also yS ∩ A = yA and
the map Spec S/yS → Spec A/yA is one-to-one.

(2) Suppose R ↪→ S is as in Proposition 2.6.2. Each height-two prime of S
contracts in R to a height-two maximal ideal of R. Each height-one prime
of R is the contraction of at most finitely many prime ideals of S and
all of these prime ideals have height one. If R ↪→ S is flat, which is true
if S ∈ {B,C,E}, then “going-down” holds for R ↪→ S, and so, for P a
height-one prime of S, we have ht (P ∩R) ≤ 1.

(3) As mentioned in [HW, Remark 1.5], C/P is Henselian for every nonzero
prime ideal P of C other than yC.

3 Spectra for two-dimensional mixed polynomial/power
series rings

Let k be a field and let x and y be indeterminates over k. We consider the
prime spectra, as partially ordered sets, of the mixed polynomial/power series
rings A, B, C, D1, D2, · · · , Dn, · · · and E as given in Equations 1 and 2 of
the introduction.

Even for k a countable field there are at least two non-order-isomorphic
partially ordered sets that can be the prime spectrum of the polynomial ring
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A := k[x, y]. Let Q be the field of rational numbers, let F be a field contained
in the algebraic closure of a finite field and let Z denote the ring of integers.
Then, by [rW1] and [rW2], Spec Q[x, y] 6∼= Spec F [x, y] ∼= Spec Z[y].

The prime spectra of the rings B, C, D1, D2, · · · , Dn, · · · , and E of Equa-
tions 1 and 2 are simpler since they involve power series in y. Remark 2.3.2
implies that y is in every maximal ideal of height two of each of these rings.

The partially ordered set Spec B = Spec k[[y]] [x] is similar to a prime
ideal space studied in [HW] and [Shah]. The difference from [HW] is that here
k[[y]] is uncountable, even if k is countable. It follows that Spec B is also
uncountable. As a partially ordered set, Spec B can be described uniquely up
to isomorphism by the axioms of [Shah] (similar to the CHP axioms of [HW]),
since k[[y]] is Henselian and has cardinality at least equal to c, the cardinality
of the real numbers R.

The following theorem characterizes U := Spec B as a Henselian affine
partially ordered set (where the “≤” relation is “set containment”):

Theorem 3.1. [HW, Theorem 2.7] [Shah, Theorem 2.4] Let B = k[[y]] [x] be
as in Equation 1, where k is a field, the cardinality of the set of maximal ideals
of k[x] is α and the cardinality of k[[y]] is β. Then the partially ordered set
U := Spec B is called Henselian affine of type (β, α) and is characterized as
a partially ordered set by the following axioms:

(1) |U | = β.
(2) U has a unique minimal element.
(3) dim (U) = 2 and |{ height-two elements of U }| = α.
(4) There exists a unique special height-one element u ∈ U such that u is

contained in every height-two element of U .
(5) Every nonspecial height-one element of U is in at most one height-two

element.
(6) Every height-two element t ∈ U contains cardinality β many height-one

elements that are only contained in t. If t1, t2 ∈ U are distinct height-
two elements, then the special element from (4) is the unique height-one
element less than both.

(7) There are cardinality β many height-one elements that are maximal.

Remarks 3.2. (1) The axioms of Theorem 3.1 are redundant. We feel this
redundancy helps in understanding the relationships between the prime ideals.

(2) The theorem applies to the spectrum of B by defining the unique
minimal element to be the ideal (0) of B and the special height-one element
to be the prime ideal yB. Every height-two maximal ideal m of B has nonzero
intersection with k[[y]]. Thus m/yB is principal and so m = (y, f(x)), for some
monic irreducible polynomial f(x) of k[x]. Consider {f(x) + ay | a ∈ k[[y]]}.
This set has cardinality β and each f(x)+ay is contained in a nonempty finite
set of height-one primes contained in m. If p is a height-one prime contained
in m with p 6= yB, then p ∩ k[[y]] = (0), and so pk((y))[x] is generated by
a monic polynomial in k((y))[x]. But for a, b ∈ k[[y]] with a 6= b, we have
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(f(x) + ay, f(x) + by)k((y))[x] = k((y))[x]. Therefore no height-one prime
contained in m contains both f(x) + ay and f(x) + by. Since B is Noetherian
and |B| = β is an infinite cardinal, we conclude that the cardinality of the
set of height-one prime ideals contained in m is β. Examples of height-one
maximals are (1+xyf(x, y) ), for various f(x, y) ∈ k[[y]] [x]. The set of height-
one maximal ideals of B also has cardinality β.

(3) These axioms characterize Spec B in the sense that every two partially
ordered sets satisfying these axioms are order-isomorphic.

The picture of Spec B is shown below:

β (y) β β · · ·

• • • · · ·

(#{ bullets} = α)

(0)

Spec k[[y]] [x]

In the diagram, β is the cardinality of k[[y]], and α is the cardinality of the
set of maximal ideals of k[x] (and also the cardinality of the set of maximal
ideals of k[[y]] [x] ); the boxed β means there are cardinality β height-one
primes in that position with respect to the partial ordering.

Next we consider Spec R[[y]], for R a Noetherian one-dimensional domain.
Then Spec R[[y]] has the following picture by Theorem 3.4 below:

(y) κi κj · · ·

• • • · · ·

(#{ bullets} = α)

(0)

Spec(R[[y]])
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Here α is the cardinality of the set of maximal ideals of R (and also the
cardinality of the set of maximal ideals of R[[y]] by Remarks 2.3.1 ); the boxed
κi (one for each maximal ideal of R) means that there are cardinality κi prime
ideals in that position, where each κi is uncountable. If R satisfies certain
cardinality conditions described in Remark 3.3.3, for example, if R = k[x], for
k a countable field, then each κi equals the cardinality of R[[y]]. By Remark
3.3.2 below, each κi is at least γℵ0 , where γ is the cardinality of R/m and
m is the maximal ideal of R such that (m, y) is the maximal ideal of R[[y]]
above the κi height-one primes in the picture above.

Remarks 3.3. Let ℵ0 denote the cardinality of the set of natural numbers.
Suppose that T is a commutative ring of cardinality δ, that m is a maximal
ideal of T and that γ is the cardinality of T/m. Then

(1) The cardinality of T [[y]] is δℵ0 , because the elements of T [[y]] are in
one-to-one correspondence with ℵ0-tuples having entries in T . If T is Noethe-
rian, then T [[y]] is Noetherian, and so every prime ideal of T [[y]] is finitely
generated. Since the cardinality of the finite subsets of T [[y]] is δℵ0 , it follows
that T [[y]] has at most δℵ0 prime ideals.

(2) If T is Noetherian, there are at least γℵ0 distinct height-one prime
ideals (other than (y)T [[y]] ) of T [[y]] contained in (m, y)T [[y]]. To see this,
choose a set C = {ci | i ∈ I} of elements of T so that {ci+ m | i ∈ I} gives the
distinct coset representatives for T/m. Thus there are γ elements of C, and
for ci, cj ∈ C with ci 6= cj , we have ci − cj /∈ m. Now also let a ∈ m, a 6= 0.
Consider the set

G = {a+
∑
n∈N

dny
n | dn ∈ C ∀n ∈ N}.

Each of the elements of G is in (m, y)T [[y]] \ yT [[y]] and hence is contained
in a height-one prime contained in (m, y)T [[y]] distinct from yT [[y]].

Moreover, |G| = |C|ℵ0 = γℵ0 . Let P be a height-one prime ideal of T [[y]]
contained in (m, y)T [[y]] but such that y /∈ P . If two distinct elements of G,
say f = a +

∑
n∈N dny

n and g = a +
∑

n∈N eny
n, with the dn, en ∈ C, are

both in P , then so is their difference; that is

f − g =
∑
n∈N

dny
n −

∑
n∈N

eny
n =

∑
n∈N

(dn − en)yn ∈ P.

Now let t be the smallest power of y so that dt 6= et. Then (f−g)/yt ∈ P , since
P is prime and y /∈ P , but the constant term, dt − et /∈m, which contradicts
the fact that P ⊆ (m, y)T [[y]]. Thus there must be at least |C|ℵ0 = γℵ0

distinct height-one primes contained in (m, y)T [[y]].
(3) Using (1) and (2), if T is Noetherian and if γℵ0 = δℵ0 , then there

are exactly γℵ0 = δℵ0 distinct height-one prime ideals (other than yT [[y]] ) of
T [[y]] contained in (m, y)T [[y]]. This is the case, for example, if T is countable,
say T = k[x] where k is a countable field, for then |T | = ℵ0 and for every γ
with 1 < γ ≤ ℵ0, γℵ0 = ℵℵ0

0 = c, the cardinality of the real numbers.
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Theorem 3.4. Suppose that R is a one-dimensional Noetherian domain with
cardinality δ := |R| = and that the cardinality of the set of maximal ideals of
R is α (α can be finite). Let U = Spec R[[y]], where y is an indeterminate
over R. Then
(a) U as a partially ordered set (where the “≤” relation is “set containment”)
satisfies the following axioms:

(1) |U | ≤ δℵ0 .
(2) U has a unique minimal element, namely (0).
(3) dim (U) = 2 and |{ height-two elements of U }| = α.
(4) There exists a unique special height-one element u ∈ U (namely u = (y))

such that u is contained in every height-two element of U .
(5) Every nonspecial height-one element of U is in exactly one height-two

element.
(6) Every height-two element t ∈ U contains uncountably many height-one

elements that are contained only in t. (The number of height-one elements
contained only in t is at least γℵ0 , where γ is the cardinality of the residue
field of the corresponding maximal ideal of R.) If t1, t2 ∈ U are distinct
height-two elements, then the special element from (4) is the unique height-
one element less than both.

(7) There are no height-one maximal elements in U . Every maximal element
has height two.

(b) If R is countable, or more generally if δ = |R| satisfies the condition of
Remarks 3.3.3, that is, γℵ0 = δℵ0 , for every γ that occurs as |R/m|, where
m is a maximal ideal of R, then U = Spec R[[y]] satisfies (1)-(7), with the
stronger axioms (1′) and (6′):

(1′) |U | = δℵ0 . (For R countable, this is c, the cardinality of the real numbers.)
(6′) Every height-two element t ∈ U contains δℵ0 (uncountably many) height-

one elements that are contained only in t.

(c) With the additional hypotheses of (b), U is characterized as a partially
ordered set by the axioms given in (a) and (b). Every partially ordered set
satisfying the axioms (1)-(7) in (a) and (b) is order-isomorphic to every other
such partially ordered set.

Proof. In part(a), item (1) is from Remark 3.3.1. Item (2) and the first part of
(3) are clear. The second part of (3) follows immediately from Remark 2.3.1.

For items (4) and (5), suppose that P is a height-one prime of R[[y]]. If
P = yR[[y]], then P is contained in each maximal ideal of R[[y]] by Remark
2.3.1, and so yR[[y]] is the special element. If y /∈ P , then, by Corollary 2.5,
P is contained in a unique maximal ideal of R[[y]].

For item (6) and items (1′) and (6′) of part (b) use Remarks 3.3.2 and
3.3.3.

For item (c), all partially ordered sets satisfying the axioms of Theorem
3.1 are order-isomorphic, and the partially ordered set U of the present the-
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orem satisfies the same axioms as in Theorem 3.1 except axiom (7) that in-
volves height-one maximals. Since U has no height-one maximals, an order-
isomorphism between two partially ordered sets as in item (c) can be deduced
by adding on height-one maximals and then deleting them. ut

Corollary 3.5. In the terminology of Equations 1 and 2 of the introduction,
we have Spec C ∼= Spec Dn

∼= Spec E, but Spec B � Spec C.

Proof. The rings C,Dn, and E are all formal power series rings in one vari-
able over a one-dimensional Noetherian domain R, where R is either k[x] or
k[x, 1/x]. Thus the domain R satisfies the hypotheses of Theorem 3.4 with the
cardinality conditions of parts (b) and (c). If k is finite, then |R| = |k[x]| = ℵ0

and α, the number of maximal ideals of R, is also ℵ0; in this case |R/m| = γ
is finite for each maximal ideal m of R and δ = |R| = γ · ℵ0 = α, and so
γℵ0 = δℵ0 . On the other hand, if k is infinite, then |k| = |k[x]| = |R| = α, and
|k| = |R/m| = γ is the same for every maximal ideal m of R. Hence also in
this case δ = |R| = γ · ℵ0 = α, and so γℵ0 = δℵ0 .

Also the number of maximal ideals is the same for C,Dn, and E, because
in each case, it is the same as the number of maximal ideals of R which is
|k[x]| = |k| · ℵ0.

Thus in the picture of R[[y]] shown above, for R[[y]] = C,Dn or E, the κi
are all equal to |k|ℵ0 and α = |k| · ℵ0, and so the spectra are isomorphic. The
spectrum of B is not isomorphic to that of C, however, because B contains
height-one maximal ideals, such as that generated by 1 + xy, whereas C has
no height-one maximal ideals. ut

Remarks 3.6. As mentioned at the beginning of this section, it is shown in
[rW1] and [rW2] that Spec Q[x, y] 6∼= Spec F [x, y] ∼= Spec Z[y], where F is a
field contained in the algebraic closure of a finite field. Corollary 3.7 shows
that the spectra of power series extensions in y behave differently in that
Spec Z[[y]] ∼= Spec Q[x] [[y]] ∼= Spec F [x] [[y]].

Corollary 3.7. If Z is the ring of integers, Q is the rational numbers, F is
a field contained in the algebraic closure of a finite field, and R is the real
numbers, then

Spec Z[[y]] ∼= Spec Q[x] [[y]] ∼= Spec F [x] [[y]] 6∼= Spec R[x] [[y]].

Proof. The rings Z,Q[x] and F [x] are all countable with countably infinitely
many maximal ideals. Thus if R = Z,Q[x] or F [x], then R satisfies the hy-
potheses of Theorem 3.4 with the cardinality conditions of parts (b) and (c).
On the other hand, R[x] has uncountably many maximal ideals; thus R[x] [[y]]
also has uncountably many maximal ideals. ut
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4 Higher dimensional mixed power series/polynomial
rings

In analogy to Equation (1), we display several embeddings involving three
variables.

(4.0) k[x, y, z]
α
↪→ k[[z]] [x, y]

β
↪→ k[x] [[z]] [y]

γ
↪→ k[x, y] [[z]]

δ
↪→ k[x] [[y, z]],

k[[z]] [x, y]
ε
↪→ k[[y, z]] [x]

ζ
↪→ k[x] [[y, z]]

η
↪→ k[[x, y, z]],

where k is a field and x, y and z are indeterminates over k.

Remarks 4.1. (1) By Proposition 2.6.2 every nonzero prime ideal of C =
k[x] [[y]] has nonzero intersection with B = k[[y]] [x]. In three or more
variables, however, the analogous statements fail. We show below that the
maps α, β, γ, δ, ε, ζ, η in Equation (4.0) fail to be TGF. Thus, by Propo-
sition 2.2.2, no proper inclusion in (4.0) is TGF. The dimensions of the
generic fiber rings of the maps in the diagram are either one or two.

(2) For those rings in (4.0) of form R = S[[z]] (ending in a power series vari-
able) where S is a ring, such as R = k[x, y][[z]], we have some information
concerning the prime spectra. By Proposition 2.4 every height-two prime
ideal not containing z is contained in a unique maximal ideal. By [N,
Theorem 15.1] the maximal ideals of S[[z]] are of the form (m, z)S[[z]],
where m is a maximal ideal of S, and thus the maximal ideals of S[[z]]
are in one-to-one correspondence with the maximal ideals of S. As in sec-
tion 3, using Remarks 2.3, we see that maximal ideals of Spec k[[z]] [x, y]
can have height two or three, that (z) is contained in every height-three
prime ideal, and that every height-two prime ideal not containing (z) is
contained in a unique maximal ideal.

(3) It follows by arguments analogous to that in Proposition 2.6.1, that α,
δ, ε are not TGF. For α, let σ(z) ∈ zk[[z]] be transcendental over k(z);
then (x − σ)k[[z]] [x, y] ∩ k[x, y, z] = (0). For δ and ε: let σ(y) ∈ k[[y]] be
transcendental over k(y); then (x − σ)k[x] [[z, y]] ∩ k[x] [[z]] [y] = (0), and
(x− σ)k[[y, z]] [x] ∩ k[[z]] [x, y] = (0).

(4) By [HRW1, Theorem 1.1], η is not TGF and the dimension of the generic
fiber ring of η is one.

In order to show in Proposition 4.3 below that the map β is not TGF, we
first observe:

Proposition 4.2. The element σ =
∑∞

n=1(xz)n! ∈ k[x] [[z]] is transcendental
over k[[z]] [x].

Proof. Consider an expression

Z := a`σ
` + a`−1σ

`−1 + · · ·+ a1σ + a0,
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where the ai ∈ k[[z]] [x] and a` 6= 0. Let m be an integer greater than ` + 1
and greater than degx ai for each i such that 0 ≤ i ≤ ` and ai 6= 0. Regard
each aiσ

i as a power series in x with coefficients in k[[z]].
For each i with 0 ≤ i ≤ `, we have i(m!) < (m + 1)!. It follows that the

coefficient of xi(m!) in σi is nonzero, and the coefficient of xj in σi is zero for
every j with i(m!) < j < (m+1)!. Thus if ai 6= 0 and j = i(m!)+degx ai, then
the coefficient of xj in aiσ

i is nonzero, while for j such that i(m!) + degx ai <
j < (m+ 1)!, the coefficient of xj in aiσ

i is zero. By our choice of m, for each
i such that 0 ≤ i < ` and ai 6= 0, we have

(m+ 1)! > `(m!) + degx a` ≥ i(m!) +m! > i(m!) + degx ai.

Thus in Z, regarded as a power series in x with coefficients in k[[z]], the
coefficient of xj is nonzero for j = `(m!) + degx a`. Therefore Z 6= 0. We
conclude that σ is transcendental over k[[z]] [x]. ut

Proposition 4.3. k[[z]] [x, y]
β
↪→ k[x] [[z]] [y] is not TGF.

Proof. Fix an element σ ∈ k[x] [[z]] that is transcendental over k[[z]] [x]. We
define π : k[x] [[z]] [y] → k[x] [[z]] to be the identity map on k[x] [[z]] and
π(y) = σz. Let q = kerπ. Then y − σz ∈ q. If h ∈ q ∩ (k[[z]] [x, y]), then

h =
s∑
j=0

t∑
i=0

(
∑
`∈N

aij`z
`)xiyj , for some s, t ∈ N and aij` ∈ k, and so

0 = π(h) =

s∑
j=0

t∑
i=0

(
∑
`∈N

aij`z
`)xi(σz)j =

s∑
j=0

t∑
i=0

(
∑
`∈N

aij`z
`+j)xiσj .

Since σ is transcendental over k[[z]] [x], we have that x and σ are al-
gebraically independent over k((z)). Thus each of the aij` = 0. Therefore
q ∩ (k[[z]][x, y]) = (0), and so the embedding β is not TGF. ut

Proposition 4.4. k[[y, z]] [x]
ζ
↪→ k[x] [[y, z]] and k[x] [[z]] [y]

γ
↪→ k[x, y] [[z]] are

not TGF.

Proof. For ζ, let t = xy and let σ ∈ k[[t]] be algebraically independent over
k(t). Define π : k[x] [[y, z]]→ k[x] [[y]] as follows. For

f :=

∞∑
`=0

∑
m+n=`

fmn(x)ymzn ∈ k[x] [[y, z]],

where fmn(x) ∈ k[x], define

π(f) :=

∞∑
`=0

∑
m+n=`

fmn(x)ym(σy)n ∈ k[x] [[y]].
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In particular, π(z) = σy. Let p := kerπ. Then z−σy ∈ p, and so p 6= (0). Let
h ∈ p ∩ k[[y, z]] [x]. We show h = 0. Now h is a polynomial with coefficients
in k[[y, z]], and we define g ∈ k[[y, z]] [t], by, if ai(y, z) ∈ k[[y, z]] and

h :=
r∑
i=0

ai(y, z)xi, then set g := yrh =
r∑
i=0

(
∞∑
`=0

∑
m+n=`

bimny
mzn)ti.

The coefficients of g are in k[[y, z]], since yrxi = yr−iti. Thus

0 = π(g) =

r∑
i=0

(

∞∑
`=0

∑
m+n=`

bimny
m(σy)n)ti =

r∑
i=0

(

∞∑
`=0

∑
m+n=`

bimnσ
ny`)ti

=
∞∑
`=0

(
∑

m+n=`

(
r∑
i=0

bimnt
i)σn)y`.

Now t and y are analytically independent over k, and so the coefficient of
each y` (in k[[t]]) is 0; since σ and t are algebraically independent over k, the
coefficient of each σn is 0. It follows that each bimn = 0, that g = 0 and hence
that h = 0. Thus the extension ζ is not TGF.

To see that γ is not TGF, we switch variables in the proof for ζ, so that
t = yz. Again choose σ ∈ k[[t]] to be algebraically independent over k(t).
Define ψ : k[x, y] [[z]] → k[y] [[z]] by ψ(x) = σz and ψ is the identity on
k[y] [[z]]. Then ψ can be extended to π : k[y] [[x, z]]→ k[y] [[z]], which is similar
to the π in the proof above. As above, set p := kerπ; then p∩k[[x, z]] [y] = (0).
Thus p ∩ k[x] [[z]] [y] = (0) and γ is not TGF. ut

Proposition 4.5. Let k be a field and let x and t be indeterminates over k.
Then σ =

∑∞
n=1 t

n! is algebraically independent over k[[x, xt]].

Proof. Let ` be a positive integer and consider an expression

γ := γ`σ
` + · · ·+ γiσ

i + · · ·+ γ1σ, where γi :=

∞∑
j=0

fij(x)(xt)j ∈ k[[x, xt]],

that is, each fij(x) ∈ k[[x]] and 1 ≤ i ≤ `. Assume that γ` 6= 0. Let a` be the
smallest j such that f`j(x) 6= 0, and let m` be the order of f`a`(x), that is,
f`a`(x) = xm`g`(x), where g`(0) 6= 0. Let n be a positive integer such that

n ≥ 2 + max{`,m`, a`}.

Since ` < n, for each i with 1 ≤ i ≤ `, we have

σi = σi1(t) + cit
i(n!) + t(n+1)!τi(t), (3)

where ci is a nonzero element of k, σi1(t) is a polynomial in k[t] of degree at
most (i− 1)n! + (n− 1)! and τi(t) ∈ k[[t]].
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Claim 4.6. The coefficient of t`(n!)+a` in σ`γ` = σ`(
∑∞

j=a`
f`j(x)(xt)j) as a

power series in k[[x]] has order m` + a`, and hence, in particular, is nonzero.

Proof. By the choice of n, (n+1)! > `(n!)+a`. Hence by the expression for σ`

given in Equation 3, we see that all of the terms in σ`γ` of the form bt`(n!)+a` ,
for some b ∈ k[[x]], appear in the product

(σ`1(t) + c`t
`(n!))(

`(n!)+a`∑
j=a`

f`j(x)(xt)j).

One of the terms of the form bt`(n!)+a` in this product is

c`t
`(n!)f`a`(x)(xt)a` = (c`x

m`+a`g`(x))t`(n!)+a` = (c`x
m`+a`g`(0)+. . .)t`(n!)+a` .

Since c`g`(0) is a nonzero element of k, c`x
m`+a`g`(x) ∈ k[[x]] has order

m` + a`. The other terms in the product σ`γ` that have the form bt`(n!)+a` ,
for some b ∈ k[[x]], are in the product

(σ`1(t))(

`(n!)+a`∑
j=a`

f`j(x)(xt)j) =

`(n!)+a`∑
j=a`

f`j(x)(xt)jσ`1(t).

Since degt σ`1 ≤ (`− 1)n! + (n− 1)! and since, for each j with f`j(x) 6= 0, we
have degt f`j(x)(xt)j = j, we see that each term in f`j(xt)

jσ`1(t) has degree
in t less than or equal to j + (`− 1)n! + (n− 1)!. Thus each nonzero term in
this product of the form bt`(n!)+a` has

j ≥ `(n!) + a` − (`− 1)(n!)− (n− 1)! = a` + (n− 1)!(n− 1) > m` + a`,

by choice of n. Moreover, for j such that f`j(x) 6= 0, the order in x of
f`j(x)(xt)j is bigger than or equal to j. This completes the proof of Claim
4.6.

Claim 4.7. For i < `, the coefficient of t`(n!)+a` in σiγi as a power series in
k[[x]] is either zero or has order greater than m` + a`.

Proof. As in the proof of Claim 4.6, all of the terms in σiγi of the form
bt`(n!)+a` , for some b ∈ k[[x]], appear in the product

(σi1 + cit
i(n!))(

`(n!)+a`∑
j=0

fij(x)(xt)j) =

`(n!)+a`∑
j=0

fij(x)(xt)j(σi1 + cit
i(n!)).

Since degt(σi1 + cit
i(n!)) = i(n!), each term in fij(x)(xt)j(σi1 + cit

i(n!)) has
degree in t at most j + i(n!). Thus each term in this product of the form
bt`(n!)+a` , for some nonzero b ∈ k[[x]], has

j ≥ `(n!) + a` − i(n!) ≥ n! + a` > m` + a`.

Thus ordxb ≥ j > m` + a`. This completes the proof of Claim 4.7. Hence
γ 6∈ k[[x, xz]] and so Proposition 4.5 is proved.
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Question/Remarks 4.8. (1) As we show in Proposition 2.6, the embeddings
from Equation 1 involving two-dimensional mixed power series/polynomial
rings over a field k with inverted elements are TGF. So far we have not
determined whether the same is true in the three-dimensional case. For
example, is θ below TGF?

k[x, y] [[z]]
θ
↪→ k[x, y, 1/x] [[z]]

(2) For the four dimensional case, as observed in the introduction, it fol-
lows from [HR, p. 364, Theorem 1.12] that the extension k[x, y, u] [z] ↪→
k[x, y, u, 1/x, ] [[z]] is not TGF. We provide in Proposition 4.9 a direct
proof of this fact.

Proposition 4.9. For k a field and x, y, u and z indeterminates over k, the
extension k[x, y, u] [[z]] ↪→ k[x, y, u, 1/x, ] [[z]] is not TGF.

Proof. Let t = z/x and let σ ∈ k[[t]] be algebraically independent over k[[x, z]].
(By Proposition 4.5, we may take σ =

∑∞
r=1 t

r! . )
Consider

π : k[[x, y, u]] [1/x] [[z]]→ k[[x, u]] [1/x] [[z]]

defined by mapping

∞∑
i=0

ai(x, y, u, 1/x)zi 7→
∞∑
i=0

ai(x, σu, u, 1/x)zi,

where ai(x, y, u, 1/x) ∈ k[[x, y, u]][1/x]. Let p = kerπ. Then y − σu ∈ p. We
show that p ∩ k[[x, y, u, z]] = (0), and so also p ∩ k[x, y, u] [[z]] = (0). Let

f :=

∞∑
`=0

(
∑
i+j=`

diju
iyj) ∈ k[[x, y, u, z]],

where dij ∈ k[[x, z]]. If f ∈ p, then

0 = π(f) =

∞∑
`=0

(
∑
i+j=`

diju
iσjuj) =

∞∑
`=0

(
∑
i+j=`

dijσ
j)u`.

This is a power series in u, and so, for each `,
∑

i+j=` dijσ
j = 0. Since σ

is algebraically independent over k[[x, z]], each dij = 0. Thus f = 0. This
completes the proof of Proposition 4.9.
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