1. Let G be a finite group with $G \neq 1$.
 (a) What is meant by a composition series for G?
 (b) State the Jordan-Hölder theorem.
 (c) What does it mean for G to be simple?
 (d) What does it mean for G to be solvable?
 (e) Give an example of a simple group that is not solvable.

2. Let P be a Sylow 5 subgroup of the alternating group A_5.
 (i) What is the order of the normalizer $N_{A_5}(P)$?
 (ii) How many Sylow 5 subgroups does A_5 have?

3. Describe all finite groups that have exactly three conjugacy classes.

4. If the finite group G has composition series $1 = N_0 \leq N_1 \leq \cdots \leq N_r = G$ and $1 = M_0 \leq M_1 \leq \cdots \leq M_r = G$,
 prove that $r = 2$.

5. List representatives for each conjugacy class in the alternating group A_5 and state the number of elements
 in each conjugacy class.

6. Let x and y be indeterminates over the field F_2. Explicitly exhibit infinitely many intermediate fields
 between $K = F_2(x^2, y^2)$ and $L = F_2(x, y)$.

7. Let p be a prime integer and let G be a group of order p^4. Suppose H is a subgroup of G with $|H| = p^2$.
 Prove or disprove that there must exist a subgroup K of G such that $H \leq K$ and $|K| = p^3$.

8. Let G be a group with $|G| = 2k$, where k is odd. Prove that G has a subgroup of order k.

9. Let G be a finite group and let $P \in \text{Syl}_p(G)$ be a Sylow p-subgroup of G. If Q is a p-subgroup of G,
 prove that $Q \cap N_G(P) = Q \cap P$.

10. Assume that F is a field of characteristic zero and that K/F is an algebraic field extension. If each
 nonconstant polynomial in $F[x]$ has at least one root in K, prove that K is algebraically closed.

11. Consider the ring $R = Z[x]/(15, x^2 + 1)$.
 (a) How many maximal ideals does the ring R have?
 (b) Give generators for each maximal ideal of the ring R.

12. Let Z denote the ring of integers. Diagram the lattice of ideals of the polynomial ring $Z[x]$ that contain
 the ideal $(6, x^3 - 1)$. Give generators for each such ideal.

13. Show that the polynomial

 $f_n(x) = (x - 1)(x - 2) \cdots (x - n) - 1$

 is irreducible over Z for each integer $n \geq 1$.

14. Show that the polynomial

 $g_n(x) = (x - 1)(x - 2) \cdots (x - n) + 1$

 is irreducible over Z for each positive integer $n \neq 4$.

15. Prove that \(\mathbb{Q}(\sqrt[3]{2}) \) is not a subfield of any cyclotomic field over \(\mathbb{Q} \).

16. Suppose \(\alpha \in \mathbb{C} \) is algebraic over \(\mathbb{Q} \).
 (a) Define “\(\alpha \) can be solved for in terms of radicals.”
 (b) For a polynomial \(f(x) \in \mathbb{Q}[x] \), define “\(f(x) \) can be solved by radicals.”

17. Let \(n \) be a positive integer and \(d \) a positive integer that divides \(n \). Suppose \(\alpha \in \mathbb{R} \) is a root of the polynomial \(x^n - 2 \in \mathbb{Q}[x] \). Prove that there is precisely one subfield \(F \) of \(\mathbb{Q}(\alpha) \) with \([F : \mathbb{Q}] = d \).

18. Let \(K/\mathbb{Q} \) be the splitting field of the polynomial \(x^5 - 1 \in \mathbb{Q}[x] \). Diagram the lattice of subfields of \(K/\mathbb{Q} \). For each subfield, give generators and list its degree over \(\mathbb{Q} \).

19. Let \(L/\mathbb{Q} \) be the splitting field of the polynomial \(x^5 - 2 \in \mathbb{Q}[x] \). Diagram the lattice of subfields of \(L/\mathbb{Q} \). For each subfield, give generators and list its degree over \(\mathbb{Q} \).

20. Let \(G \) be the Galois group of an irreducible polynomial \(f(x) \in \mathbb{Q}[x] \), where \(\deg f = 5 \).
 (a) What integers are possible for the order of \(G \)? Explain your answer.
 (b) If \(G \) contains an element of order 3, what integers are possible for the order of \(G \)? Explain your answer.

21. Suppose \(f(x) \in \mathbb{Q}[x] \) is a monic polynomial of degree \(n \) and \(\alpha_1, \ldots, \alpha_n \in \mathbb{C} \) are the roots of \(f(x) \). Let \(G \) be the Galois group of \(f(x) \) over \(\mathbb{Q} \).
 (a) Prove that \(f(x) \) is irreducible in \(\mathbb{Q}[x] \) if and only if the action of \(G \) on \(\{ \alpha_1, \ldots, \alpha_n \} \) is transitive.
 (b) If the action of \(G \) on \(\{ \alpha_1, \ldots, \alpha_n \} \) is doubly transitive, prove that \(\mathbb{Q} \) is the only proper subfield of \(\mathbb{Q}(\alpha_1) \).

22. Let \(p \) be a prime integer and let \(\mathbb{F}_p \) denote the field with \(p \) elements.
 (a) Prove or disprove that every finite algebraic extension field of \(\mathbb{F}_p \) is Galois.
 (b) Let \(K \) and \(L \) be finite algebraic field extensions of \(\mathbb{F}_p \). If \([K : \mathbb{F}_p] \leq [L : \mathbb{F}_p] \), does it follow that \(K \) is isomorphic to a subfield of \(L \)? Justify your answer.
 (c) Let \(\overline{\mathbb{F}_p} \) denote the algebraic closure of \(\mathbb{F}_p \). If \(E \) is a subfield of \(\overline{\mathbb{F}_p} \) and \([E : \mathbb{F}_p] = \infty \), prove or disprove that \(E = \overline{\mathbb{F}_p} \).

23. Let \(G \) be a finite group of order \(pqr \), where \(p > q > r \) are prime.
 (a) If \(G \) fails to have a normal subgroup of order \(p \), determine the number of elements in \(G \) of order \(p \).
 (b) If \(G \) fails to have a normal subgroup of order \(q \), prove that \(G \) has at least \(q^2 \) element of order \(q \).
 (c) Prove that \(G \) has a nontrivial normal subgroup.

24. Let \(K/F \) be a finite algebraic field extension. If \(K = F(\alpha) \) for some \(\alpha \in K \), prove that there are only finitely many subfields of \(K \) that contain \(F \).

25. Let \(F \) be an infinite field and let \(K/F \) be a finite algebraic field extension. If there are only finitely many subfields of \(K \) that contain \(F \), prove that \(K = F(\alpha) \) for some \(\alpha \in K \).
26. Let L/\mathbb{Q} be the Galois closure of the finite algebraic field extension $\mathbb{Q}(\alpha)$ of \mathbb{Q}. Let p be a prime that divides the order of $\text{Gal}(L/\mathbb{Q})$. Prove that there exists a subfield F of L such that $[L : F] = p$ and $L = F(\alpha)$.