These are exercises from Chapter 3 of Jacobson. By a basis or base for a module is meant a linearly independent subset which spans the module, cf. page 164 of Hoffman and Kunze. From Section 3.6 of Jacobson.

1. Find a base for the submodule of \(\mathbb{Z}^{(3)} \) generated by
\[
 f_1 = (1, 0, -1), \quad f_2 = (2, -3, 1), \quad f_3 = (0, 3, 1), \quad f_4 = (3, 1, 5).
\]

2. Find a base for the submodule of \(\mathbb{Q}[\lambda]^{(3)} \) generated by
\[
 f_1 = (2\lambda - 1, \lambda, \lambda^2 + 3), \quad f_2 = (\lambda, \lambda, \lambda^2), \quad f_3 = (\lambda + 1, 2\lambda, 2\lambda^2 - 3).
\]

3. Find a base for the \(\mathbb{Z} \)-submodule of \(\mathbb{Z}^{(3)} \) consisting of all \((x_1, x_2, x_3)\) satisfying the conditions
\[
 x_1 + 2x_2 + 3x_3 = 0, \quad x_1 + 4x_2 + 9x_3 = 0.
\]

From Section 3.7, 1. Obtain a normal form over \(\mathbb{Z} \) for the integral matrix
\[
 B = \begin{bmatrix}
 6 & 2 & 3 & 0 \\
 2 & 3 & -4 & 1 \\
 -3 & 3 & 1 & 2 \\
 -1 & 2 & -3 & 5
\end{bmatrix}
\]

From Section 3.8, 1. Determine the structure of \(\mathbb{Z}^{(3)}/K \) where \(K \) is generated by \(f_1 = (2, 1, -3) \), and \(f_2 = (1, -1, 2) \).

From Section 3.9, 1. Let \(D = \mathbb{R}[\lambda] \) and suppose \(M \) is a direct sum of cyclic \(D \)-modules whose order ideals are the ideals generated by the polynomials
\[
 (\lambda - 1)^3, \quad (\lambda^2 + 1)^2, \quad (\lambda - 1)(\lambda^2 + 1)^4, \quad (\lambda + 2)(\lambda^2 + 1)^2.
\] Determine the elementary divisors and invariant factors of \(M \).

Let \(D \) be a principal ideal domain (PID) and let \(M \) be a \(D \)-module. A submodule \(N \) of \(M \) is said to be pure in \(M \) if for any \(y \in N \) and \(a \in D \), if there exists \(x \in M \) with \(ax = y \), then there exists \(x' \in N \) with \(ax' = y \). The module \(M \) is said to be a torsion module if for each \(m \in M \) there exists a nonzero \(d \in D \) such that \(dm = 0 \).

7. Show that if \(N \) is a direct summand of \(M \), then \(N \) is pure in \(M \). Show that if \(N \) is a pure submodule of \(M \) and \(\text{ann}(x + N) = (d) \) then \(x \) can be chosen in its coset \(x + N \) so that \(\text{ann} x = (d) \).

8. Show that if \(N \) is a pure submodule of a finitely generated torsion module \(M \) over a PID, then \(N \) is a direct summand of \(M \).
Some remarks about T-annihilators.

In connection with Exercise 4 on page 225 of Hoffman and Kunze, I suggest you go back and review the remark on page 202 concerning a vector $\alpha \in V$ and W a T-invariant subspace of V. The T-conductor of α into W is by definition

$$S_T(\alpha; W) = \{ g(x) \in F[x] : g(T)(\alpha) \in W \}.$$

$S_T(\alpha; W)$ is an ideal of the polynomial ring $F[x]$. One also calls the unique monic generator of $S_T(\alpha; W)$ the T-conductor of α into W. A useful fact is that for every $\alpha \in V$ and T-invariant subspace W of V, the T-conductor of α into W divides the minimal polynomial of T.

In Exercise 4 on page 225, we are given that $p = (x - c_1)^{r_1} \cdots (x - c_k)^{r_k}$ is the minimal polynomial of T. If $\alpha \in V$ is such that $(T - c_i I)^m(\alpha) = 0$ for some positive integer m, then the T-annihilator of α is a divisor of $(x - c_i)^m$ and of p and therefore has the form $(x - c_i)^s$, where $s \leq r_i$ and $s \leq m$. Thus $(T - c_i I)^{r_i}(\alpha) = 0$.

Given a vector space V over a field F and $T : V \to V$ a linear operator, we give to V the structure of a module over the polynomial ring $F[x]$ by defining $g(x)(\alpha) = g(T)(\alpha)$ for each $g(x) \in F[x]$ and $\alpha \in V$. The submodules of V are precisely the T-invariant subspaces of V. Suppose V is finite-dimensional and $p = p_1^{r_1} \cdots p_k^{r_k}$ is the minimal polynomial for T where the p_i are distinct monic irreducible polynomials in $F[x]$. Let W_i be the null space of $p_i(T)^{r_i}$. The primary decomposition theorem tells us that $V = W_1 \oplus \cdots \oplus W_k$. Moreover, as is asserted in Exercise 10 on page 226 of Hoffman and Kunze, if W is a T invariant subspace of V, then

$$W = (W \cap W_1) \oplus \cdots \oplus (W \cap W_k).$$

Note that this tells us a great deal about the submodules of V. It says, for example, that if $\dim(V) = n$ and if T has n distinct characteristic values, then V has precisely 2^n submodules. Thus an easy way to prove Exercise 7 (b) on page 231 of Hoffman and Kunze (which asks to show that if $\{\alpha_1, \ldots, \alpha_n\}$ is a basis for V of characteristic vectors having distinct characteristic values, then $\alpha = \alpha_1 + \cdots + \alpha_n$ is a cyclic vector for V) is to observe that α is in no proper submodule of V.