Definition 1. Let A be a subring of an integral domain B. The conductor of B into A is

$$\mathbf{c} = \{ a \in A \mid aB \subset A \}.$$

Notice that \mathbf{c} is an ideal of both the ring A and the ring B and is the largest ideal of A that is also an ideal of B. We have $\mathbf{c} = 0$ unless B is contained in the field of fractions of A, and B is contained in a cyclic A-module.

The conductor of B into A is useful for describing prime ideals \mathbf{p} of A such that $B \subset A_{\mathbf{p}}$. The following lemma is from Zariski-Samuel Ch V, Section 5.

Lemma 2. Let A be an integral domain, let B denote the integral closure of A and let **c** be the conductor of B into A. If S is a multiplicative system in A, then $S^{-1}B$ is the integral closure of $S^{-1}A$, and, for $S^{-1}A$ to be integrally closed, it is sufficient that $\mathbf{c} \cap S \neq \emptyset$. Furthermore, if B is a finite A-module, then the conductor of $S^{-1}B$ into $S^{-1}A$ is $S^{-1}\mathbf{c}$ and if, moreover, $S^{-1}A$ is integrally closed, then $\mathbf{c} \cap S \neq \emptyset$.

Remark 3. Lemma 2 implies that if the integral closure *B* of *A* is a finite *A*-module, then the prime ideals **p** of *A* such that $B \subset A_{\mathbf{p}}$ are precisely the prime ideals **p** that do not contain the conductor **c** of *B* into *A*. Thus the closed set $\mathcal{V}(\mathbf{c}) = \{\mathbf{p} \in \operatorname{Spec} A \mid \mathbf{c} \subset \mathbf{p}\}$ is the nonnormal (or non-integrally closed) locus of Spec *A*.

Example 4. Let x and y be indeterminates over a field k and consider the inclusion map of rings

$$A = k[x(x-1), x^2(x-1), y] \hookrightarrow k[x,y] = B.$$

Notice that x is integral over A. Thus B = A[x] is integral over A. Since B is integrally closed, it follows that B is the integral closure of A. Moreover B = A + Ax. Thus B is a finite A-module. It is not difficult to show that x(x - 1)B is an ideal in A and that

$$\mathbf{c} = x(x-1)B = (x(x-1), x^2(x-1))A$$

is the conductor of B into A.

Let $\mathbf{q} = (x - y)B$ and let $\mathbf{p} = \mathbf{q} \cap A$. Since $\mathbf{c} \not\subseteq \mathbf{p}$, we have $B \subset A_{\mathbf{p}}$. Hence $\mathbf{q}B_{\mathbf{q}} = \mathbf{p}A_{\mathbf{p}}$ and \mathbf{q} is the unique prime of B lying over \mathbf{p} . Let $M_1 = (x, y)B$ and $M_2 = (x - 1, y)B$. Notice that

$$M := M_1 \cap A = (x(x-1), \ x^2(x-1), \ y)A = M_2 \cap A.$$

Since $\mathbf{q} \subset M_1$, it follows that $\mathbf{p} \subset M \subset M_2$. Hence $\mathbf{p} B \subset M_2$. Therefore M_2 contains a minimal prime of $\mathbf{p} B$. Since \mathbf{q} is the unique prime of B lying over \mathbf{p} and $\mathbf{q} \not\subseteq M_2$, it follows that the going-down property fails for the chain $\mathbf{p} \subset M$ of A and the prime ideal M_2 of B that lies over M in A. Indeed, in this example it can be seen that M_2 is a minimal prime of $\mathbf{p} B$.