1. Associated graded rings

Question 1.1. Let $G = k[G_1] = \bigoplus_{n \geq 0} G_n$ be a one-dimensional standard graded ring over the field $k = G_0$. What are necessary and sufficient conditions in order that G be the associated graded ring, $\text{gr}_m(R)$, of a one-dimensional Cohen-Macaulay local ring (R, m)?

The standard graded ring $G = k[G_1]$ is isomorphic to the associated graded ring of the local ring G_{G_+} and if G is Cohen-Macaulay, then G_{G_+} is Cohen-Macaulay. Hence every Cohen-Macaulay standard graded ring $k[G_1]$ is the associated graded ring of a Cohen-Macaulay local ring.

If $\dim_k G_1 \leq 2$, then $G = \text{gr}_m(R)$, where (R, m) is Cohen-Macaulay, implies G is Cohen-Macaulay. For one may assume that the embedding dimension of R is at most two and that R is complete in the m-adic topology. It follows that R is either a DVR, or of the form S/fS, where S is a two-dimensional RLR. If R is a DVR, then $\text{gr}_m(R)$ is a polynomial ring $k[t]$, while if $R = S/fS$, where (S, n) is a two-dimensional RLR, then $\text{gr}_m(R) = \text{gr}_n(S)/(f^*)$, where $\text{gr}_n(S) = k[x, y]$ is a polynomial ring in two variables over the field k and f^* is the initial form of f and thus a nonzero homogeneous element of degree e, where e is the multiplicity of R and G.

There exist one-dimensional standard graded rings $G = k[G_1]$ with $\dim_k G_1 = 3$ that are not Cohen-Macaulay, but are of the form $\text{gr}_m(R)$, where (R, m) is a one-dimensional Cohen-Macaulay local domain.

Example 1.2. Let $R = k[[t^4, t^5, t^{11}]]$, and define a k-algebra homomorphism of $S = k[[x, y, z]]$ onto R by $x \mapsto t^4$, $y \mapsto t^5$, and $z \mapsto t^{11}$. Then $R = S/I$, where $I = (xz - y^4, yz - x^4, z^2 - x^3 y^2)$. In an abuse of notation, we let x, y, z denote their own initial forms in the associated graded ring $\text{gr}_n(S)$. Thus $\text{gr}_n(S)$ is the polynomial ring $k[x, y, z]$ and the ideal I^* of initial forms of elements of I contains (xz, yz, z^2). Since these initial forms are all multiples of z, they do not generate I^*.

Date: December 7, 2007.
One computes that
\[I^* = (xz, yz, z^2, y^4)k[x, y, z], \]
and therefore that
\[G = \text{gr}_m(R) = \frac{k[x, y, z]}{(xz, yz, z^2, y^4)}. \]
Notice that \(\text{Ann}_G z = (x, y, z)G \), the graded maximal ideal of the one-dimensional standard graded ring \(G \). Thus \(G \) is a one-dimensional standard graded ring that is not Cohen-Macaulay, but yet has the form \(\text{gr}_m(R) \), where \((R, m) \) is Cohen-Macaulay. We have \(e(R) = e(G) = 4 \) and \(t^4R = J \) is a principal reduction of \(m \).

Since \(R \) is Cohen-Macaulay, we have \(\ell(R/t^4R) = 4 = e(R) \). Notice that \(xG \) is a principal reduction of the maximal graded ideal \(G_+ \) of \(G \). One computes that
\[\ell(G/xG) = \ell(k[y, z]) = 5, \]
and
\[\ell(0 :_G x) = 1. \]
This confirms the equation
\[e(G) = \ell(G/xG) - \ell(0 :_G x). \]

Tom Marley [1] proved a result that implies as a special case that if \((R, m) \) is a one-dimensional Cohen-Macaulay local ring and \(G = \text{gr}_m(R) \) is not Cohen-Macaulay, then \(a_0(G) > a_1(G) \), where
\[a_0(G) = \max\{n \mid H^0_{G_+}(G)_n \neq 0\}, \]
and \(H^0_{G_+}(G) = \bigcup_{i \geq 0} (0) :_G G^i_+ \).

Here \(x \in G_1 \) generates a principal reduction of \(G_+ \) and \(\varphi : G \to G[1/x] \) is the canonical homomorphism.

For \(R \) and \(G \) as in Example 1.2, one sees that \(H^0_{G_+}(G) = zG = (z) \) and \(\deg z = 1 \), so \(a_0(G) = 1 \). Also \(G[1/x] = k[x, y][1/x] \), where \(y^4 = 0 \). Hence \(y^3/x \in G[1/x] \) has a nonzero image in \(G[1/x] \) and is a homogeneous element of maximal degree with this property. Since \(\deg y^3/x = 2 \), we have \(a_1(G) = 2 > 1 = a_0(G) \), as is to be expected because of Marley’s result.

Question 1.3. Does there exist a one-dimensional standard graded ring \(G = k[G_1] \) as in Question 1.1 that also has \(a_0(G) < a_1(G) \) and yet \(G \) is not an associated graded ring \(\text{gr}_m(R) \), where \((R, m) \) is Cohen-Macaulay? Or said another way, could it be that the necessary condition \(a_0(G) < a_1(G) \) is also a sufficient condition, and thus an answer to Question 1.1?
Example 1.4. Let $R = k[[t^6, t^7, t^{15}]]$, and define a k-algebra homomorphism of $S = k[[x, y, z]]$ onto R by $x \mapsto t^6$, $y \mapsto t^7$, and $z \mapsto t^{15}$. Then $R = S/I$, where $I = (xz - y^3, z^2 - x^5)S$. Thus R is a complete intersection and therefore is Gorenstein. As in Example 1.2, we let x, y, z denote their own initial forms in the associated graded ring $\text{gr}_n(S)$. Thus $\text{gr}_n(S)$ is the polynomial ring $k[x, y, z]$ and one computes that the ideal I^* of initial forms of elements of I is

$$I^* = (xz, z^2, zy^3, y^6)k[x, y, z],$$

and therefore that

$$G = \text{gr}_m(R) = \frac{k[x, y, z]}{(xz, z^2, zy^3, y^6)}.$$

Notice that $\text{Ann}_G z = (x, z, y^3)G$ is primary for the graded maximal ideal G_+ of the one-dimensional standard graded ring G. Thus G is not Cohen-Macaulay, but yet has the form $\text{gr}_m(R)$, where (R, m) is Gorenstein. We have $e(R) = e(G) = 6$ and $t^6R = J$ is a principal reduction of m. Since R is Cohen-Macaulay, we have $\ell(R/t^6R) = 6 = e(R)$. Notice that xG is a principal reduction of G_+. One computes that

$$\ell\left(\frac{G}{xG}\right) = \ell\left(\frac{k[y, z]}{(z^2, zy^3, y^6)}\right) = 9, \quad \text{and} \quad \ell(0 :_G x) = 3.$$

This confirms the equation

$$e(G) = \ell(G/xG) - \ell(0 :_G x).$$

One also computes that

$$(0 :_G x = (z, zy, zy^2)G = H^0_{G_+}(G) \quad \text{and thus} \quad a_0(G) = 3,$$

while

$$G\left[\frac{1}{x}\right] = k[x, y]\left[\frac{1}{x}\right], \quad \text{where} \quad y^6 = 0, \quad \text{so} \quad \frac{y^5}{x} \in G\left[\frac{1}{x}\right]$$

has a nonzero image in

$$H^1_{G_+}(G) = G\left[\frac{1}{x}\right] \varphi(G).$$

Since $\deg\frac{y^5}{x} = 4$, $a_1(G) \geq 4$,

and since y^5/x has maximal degree among homogeneous elements of $G[1/x] \setminus \varphi(G)$, we have $a_1(G) = 4$.

It is interesting to also consider the principal reduction $x - y$ of G_+. We have

$$\ell\left(\frac{G}{(x - y)G}\right) = \ell\left(\frac{k[y, z]}{(z^2, zy, y^6)}\right) = 7, \quad \text{and} \quad \ell(0 :_G x - y) = 1.$$

Since G is not Cohen-Macaulay, for each $w \in G_1$ that generates a reduction of G_+, we must have $\ell(G/wG) > e(G) = 6$, but the length varies depending on the length of $(0) :_G w$.
Remark 1.5. Let $G = k[G_1] = \bigoplus_{n \geq 0} G_n$ be a one-dimensional standard graded ring over the field $k = G_0$. If G is not Cohen-Macaulay and $\dim_k G_1 = 2$, then $a_0(G) > a_1(G)$. For $G = k[x, y] = S/I$, where $S = k[X, Y]$ is a polynomial ring and I is a homogeneous ideal with $\text{ht} I = 1$. Since the polynomial ring S is a UFD, $I = fL$, where f is a homogeneous polynomial of degree $d \geq 1$ and either $L = S$, or L is a homogeneous ideal that is primary for the maximal ideal $(X, Y)S$. Since G is not Cohen-Macaulay, $L \neq S$. We may assume that the field k is infinite and that f is monic as a polynomial in Y. Then xG is a principal reduction of $G +$ and $H^1_G + (G) = G[1/x]/\varphi(G)$, where $\varphi(G) = G/fG = S/fS$ and $a_1(G) = d - 2$ since $y^{d-1} \in G[1/x] \setminus \varphi(G)$ is a homogeneous element of degree $d - 2$ and this is the maximal degree of a homogeneous element of $G[1/x] \setminus \varphi(G)$. On the other hand, $H^0_G + (G) = J/I$, where J is the saturation in $S = k[X, Y]$ of $I = fL$, i.e.,

$$J = \bigcup_{n \geq 0} (fL :_S (X, Y))^n = fS,$$

and thus $H^0_G + (G) = fS/fL$.

It follows that $a_0(G) = \deg f + \text{socdeg}(L)$, where $\text{socdeg}(L)$ is the maximal degree of a homogeneous element in $(L :_S (X, Y)) \setminus L$. Since L is $(X, Y)S$-primary, $\text{socdeg}(L)$ is a well-defined nonnegative integer.

We conclude that $a_0(G) + 2 \leq a_0(G)$ if $\dim_k G_1 = 2$ and G is not Cohen-Macaulay.

Question 1.6. Let $S = k[x, y, z]$ be the graded polynomial ring in the variables x, y, z over the field k. Can one describe or classify in some way the homogeneous ideals I of S such that

1. the radical of I is the prime ideal $(y, z)S$,
2. I has the maximal ideal $(x, y, z)S$ as an associated prime,
3. $G = S/I$ has the property that $a_0(G) < a_1(G)$?

Example 1.2 shows that the ideal $(xz, yz, z^2, y^4)S$ has the properties enumerated in Question 1.6, but one sees that the ideals $(xz, yz, z^2, y^2)S$ and $(xz, yz, z^2, y^3)S$ fail to satisfy the condition $a_0(G) < a_1(G)$. Example 1.4 shows that the ideal $(xz, z^2, yz^3, y^6)S$ has the properties enumerated in Question 1.6, but one sees that the ideals $(xz, z^2, yz^3, y^4)S$ and $(xz, z^2, yz^3, y^5)S$ fail to satisfy the condition $a_0(G) < a_1(G)$.
2. THE ASSOCIATIVITY FORMULA FOR MULTIPLICITIES

REFERENCES

Department of Mathematics, Purdue University, West Lafayette, IN 47907

E-mail address: heinzer@math.purdue.edu