# MATH 373 

## Quiz 5

Fall 2018
November 20, 2018

1. A callable bond matures at the end of 20 years for 10,000 . The bond pays coupons at a rate of $7 \%$ convertible semi-annually.

The bond can be called at the end of 14 year for a call value of 10,500 . The bond can be called at the end of 16 years for a call value of 10,350 . Finally, the bond can be called at the end of 18 years for a call value of 10,200.

Determine the price of this callable bond to yield a return of 7\% convertible semi-annually.

## Solution:

| $\mathbf{I} / \mathbf{Y}$ | $\mathbf{N}$ | FV | PMT | CPT PV |
| :---: | :---: | :---: | :---: | :---: |
| $7 / 2=3.5$ | $14^{*} 2=28$ | 10,500 | $(10,000)(0.07 / 2)=350$ | $10,190.83$ |
| 3.5 | 32 | 10,350 | 350 | $10,116.41$ |
| 3.5 | 36 | 10,200 | 350 | $10,057.97$ |
| 3.5 | 40 | 10,000 | 350 | $10,000.00$ |

Price is 10,000 since that is the lowest price.
2. The stock of Bray Industries pays a quarterly dividend with the next dividend payable in 2 months. The first dividend will be 10. The second dividend will be 11 . The third dividend will be 12. Each dividend will follow the same pattern with each dividend being 1 greater than the prior dividend.

Using the dividend discount method, determine the price to yield $10 \%$ compounded quarterly.

## Solution:

We need $\frac{i^{(4)}}{4}$. We are given that $i^{(4)}=0.10$ so $\frac{i^{(4)}}{4}=0.025$.
$P V=\left(\frac{10}{0.025}+\frac{1}{(0.025)^{2}}\right)(1.025)^{1 / 3}=2016.53$

We multiply by $(1.025)^{1 / 3}$ because the first divdend is paid at the end of two months.
3. The stock of Crouthamel Company pays quarterly dividends with the next dividend of 4 being paid later today. Each dividend thereafter increases $1.5 \%$ of the prior dividend. In other words, the second dividend at the end of three months will be $4(1.015)$. The third dividend paid at the end of six months will be $4(1.015)^{2}$, etc.

Using the dividend discount method, determine the price of Crouthamel stock at an annual effective discount rate of $12 \%$.

## Solution:

We need $\frac{i^{(4)}}{4}$. We are given that $\mathrm{i}=0.12$ so $\frac{i^{(4)}}{4}=(1.12)^{0.25}-1=0.028737345$

$$
P V=4+4(1.015)(1.028737345)^{-1}+4(1.015)^{2}(1.028737345)^{-2}+\ldots
$$

$$
=\frac{4-0}{1-(1.015)(1.028737345)^{-1}}=299.55
$$

Because of poor wording, some students interpreted the question to say that $d=0.12$. Then

$$
\begin{aligned}
& i=\frac{d}{1-d}=\frac{0.12}{1-0.12}=0.136363636==>\frac{i^{(4)}}{4}=(1.136363636)^{0.25}-1=0.032474494 \\
& P V=4+4(1.015)(1.032474494)^{-1}+4(1.015)^{2}(1.032474494)^{-2}+\ldots \\
& =\frac{4-0}{1-(1.015)(1.032474494)^{-1}}=236.34
\end{aligned}
$$

