MATH 373

 Quiz 6

 Quiz 6
 Fall 2018
 November 29, 2019

1. Liu Life Insurance Company has promised to pay Fang a payment of 500,000 at the end of 8 years.

Liu Life Insurance Company wants to immunize the payment to Fang by investing the following two assets:
i. Asset A is a zero coupon bond maturing for 10,000 at the end of 2 years.
ii. Asset B is a zero coupon bond maturing for 10,000 at the end of 10 years.

At an annual effective interest rate of 7\%, calculate the number of each bonds that Liu should buy. (Assume that you can buy partial bonds.)

Solution:

Total price of asset A $=P_{A}=\left(\frac{500,000}{(1+i)^{8}}\right)\left(\frac{10-8}{10-2}\right)=72,751.13807$
price per $\mathrm{A}=\frac{10,000}{(1.07)^{2}}=8734.387283$
Number of bond $A=\frac{72,751.13807}{8734.387283}=8.329277797$
Total price of Asset $\mathrm{B}=P_{B}=\left(\frac{500,000}{(1.07)^{8}}\right)\left(\frac{6}{8}\right)=218,253.4142$
Price of Asset $B=\frac{10,000}{(1.07)^{10}}=5083.492921$
Number of Asset $B=\frac{218,253.4142}{5083.492921}=42.93375$
2. Shikun is the recipient of an annuity that will pay the following:
i. 100,000 today;
ii. 200,000 at the end of two years; and
iii. 300,000 at the end of four years.

Calculate the Macaulay Convexity of Shikun's payments at an interest rate of 4\%.

Solution:

MacCon $=\frac{\sum C_{t} \cdot t^{2} \cdot v^{t}}{\sum C_{t} \cdot v^{t}}=\frac{(100,000)\left(0^{2}\right)\left(v^{0}\right)+(200,000)\left(2^{2}\right) v^{2}+(300,000)\left(4^{2}\right) v^{4}}{100,000+200,000 v^{2}+300,000 v^{4}}$
$=\frac{4,842,705.087}{541,352.4999}=8.945567053$
3. A 20 year bond matures for its par value of 10,000 . The bond pays annual coupons at a rate of 7\%.

Calculate the Modified duration of the bond using an interest rate of 5%.

Solution:

Coupon $=10,000(0.07)=700$
$\mathrm{N}=20, \mathrm{PMT}=700, \mathrm{FV}=10,000, \mathrm{I} / \mathrm{Y}=5, \mathrm{CPT} \mathrm{PV}=12,492.44207=$ Price of Bond

$$
\begin{aligned}
& \text { MacDur }=\frac{\sum C_{t} \cdot t \cdot v^{t}}{\sum C_{t} \cdot v^{t}}=\frac{(700)(1) v^{1}+(700)(2) v^{2}+\ldots+(700)(20) v^{20}+(10,000)(20) v^{20}}{\text { Price of Bond }} \\
& =\frac{700 a_{\overline{20}}+\frac{700}{0.05}\left(a_{\overline{20}}-20 v^{20}\right)+(10,000)(20) v^{20}}{12,492.44207}=\frac{153,043.3334}{12,492.44207}=12.25087397 \\
& \text { ModDur }=v(\text { MacDur })=\frac{12.25087397}{1.05}=11.6675
\end{aligned}
$$

