STAT 475

Quiz 2

Spring 2018

March 6, 2018

1. The Bloom Life Insurance Company sells a whole life insurance policy to (60). The policy pays a death benefit of 100,000 at the end of the year of death. The policy has annual premiums paid at the beginning of each policy year.

You are given:
i. Mortality follows the Illustrative Life Table.
ii. Interest rates are uncertain but are distributed as follows:

1. 5% with a probability of 30%
2. 6% with a probability of 40%
3. 7% with a probability of 30%
iii. Net annual premiums are determined using 6% which is the expected value of the interest rate.
iv. The following table of values:

i	d	A_{60}	${ }^{2} A_{60}$
5%	0.04762	0.42580	0.21952
6%	0.05660	0.36913	0.17741
7%	0.06542	0.32268	0.14669

a. (2 points) The net annual premium is 3300 to the nearest 100 . Calculate it to the nearest 1.

Solution:

$$
\begin{aligned}
& P V P=P V B \\
& P \ddot{a}_{60}=100,000 A_{60} \\
& \ddot{a}_{60}=\frac{1-A_{60}}{d}=\frac{1-0.36913}{0.0566}=11.14611 \\
& P=\frac{(100,000)(0.36913)}{11.14611}=3312
\end{aligned}
$$

The loss at issue random variable for this policy is L_{0}.
b. (12 points) Complete the following table. Show your work.

i	$E\left[L_{0} \mid i\right]$	$\operatorname{Var}\left[L_{0} \mid i\right]$
5\%	$\begin{aligned} & (100,000)(0.4258) \\ & -3312\left(\frac{1-0.4258}{0.04762}\right) \\ & =2644.04 \end{aligned}$	$\begin{aligned} & \left(S+\frac{P}{d}\right)^{2}\left({ }^{2} A_{60}-\left[A_{60}\right]^{2}\right) \\ & \left(100,000+\frac{3312}{0.04762}\right)^{2}\left(0.21952-[0.4258]^{2}\right) \\ & (169,550.6)^{2}(0.03821) \\ & =1,098,563,720 \end{aligned}$
6\%	0 Due to Equivalence Principle	$\begin{aligned} & (158,515.9)^{2}(0.041153) \\ & =1,034,064,471 \end{aligned}$
7\%	$\begin{aligned} & (100,000)(0.32268) \\ & -3312\left(\frac{1-0.32268}{0.06542}\right) \\ & =-2022.49 \end{aligned}$	$\begin{aligned} & (1650,626,72)^{2}(0.042567) \\ & =965,791,509 \end{aligned}$

c. (2 points) Calculate the $E\left[L_{0}\right]$.

Solution:

$$
\begin{aligned}
& E\left[L_{0}\right]=(0.3) E\left[L_{0} \mid i=5 \%\right]+(0.4) E\left[L_{0} \mid i=6 \%\right]+(0.3) E\left[L_{0} \mid i=7 \%\right] \\
& =(0.03)(2644.04)+(0.4)(0)+(0.3)(-2022.49)=186.46
\end{aligned}
$$

d. $\left(6\right.$ points) Calculate the $\operatorname{Var}\left[L_{0}\right]$

$$
\begin{aligned}
& \text { Solution: } \\
& \begin{array}{l}
\operatorname{Var}\left[L_{0}\right]=E\left(\operatorname{Var}\left[L_{0} \mid i\right]\right)+\operatorname{Var}\left(E\left[L_{0} \mid i\right]\right) \\
=(0.3)(1,098,563,720)+(0.4)(1,034,064,471)+(0.3)(965,791,509) \\
+(0.3)(2644.04)^{2}+(0.4)(0)^{2}+(0.3)(-2022.49)^{2}-(186.46)^{2} \\
=1,032,932,357+3,289,655=1,036,222,012
\end{array}
\end{aligned}
$$

