STAT 475 Quiz 2 Spring 2018 March 6, 2018

1. The Bloom Life Insurance Company sells a whole life insurance policy to (60). The policy pays a death benefit of 100,000 at the end of the year of death. The policy has annual premiums paid at the beginning of each policy year.

You are given:

- i. Mortality follows the Illustrative Life Table.
- ii. Interest rates are uncertain but are distributed as follows:
 - 1. 5% with a probability of 30%
 - 2. 6% with a probability of 40%
 - 3. 7% with a probability of 30%
- iii. Net annual premiums are determined using 6% which is the expected value of the interest rate.

i	d	$A_{_{60}}$	$^{2}A_{60}$
5%	0.04762	0.42580	0.21952
6%	0.05660	0.36913	0.17741
7%	0.06542	0.32268	0.14669

iv. The following table of values:

a. (2 points) The net annual premium is 3300 to the nearest 100. Calculate it to the nearest 1.

Solution:

PVP = PVB $P\ddot{a}_{60} = 100,000A_{60}$

$$\ddot{a}_{60} = \frac{1 - A_{60}}{d} = \frac{1 - 0.36913}{0.0566} = 11.14611$$

$$P = \frac{(100,000)(0.36913)}{11.14611} = 3312$$

The loss at issue random variable for this policy is $\,L_{\!_0}$.

i	$E[L_0 \mid i]$	$Var[L_0 \mid i]$	
5%	$(100,000)(0.4258)$ $-3312\left(\frac{1-0.4258}{0.04762}\right)$ $= 2644.04$	$\left(S + \frac{P}{d}\right)^{2} ({}^{2}A_{60} - [A_{60}]^{2})$ $\left(100,000 + \frac{3312}{0.04762}\right)^{2} (0.21952 - [0.4258]^{2})$ $(169,550.6)^{2} (0.03821)$ $= 1,098,563,720$	
6%	0 Due to Equivalence Principle	$(158,515.9)^2(0.041153)$ $= 1,034,064,471$	
7%	$(100,000)(0.32268)$ $-3312\left(\frac{1-0.32268}{0.06542}\right)$ $= -2022.49$	$(1650, 626, 72)^2 (0.042567)$ $= 965, 791, 509$	

b. (12 points) Complete the following table. Show your work.

c. (2 points) Calculate the $E[L_0]$.

Solution:

$$E[L_0] = (0.3)E[L_0 | i = 5\%] + (0.4)E[L_0 | i = 6\%] + (0.3)E[L_0 | i = 7\%]$$

=(0.03)(2644.04)+(0.4)(0)+(0.3)(-2022.49)=186.46

d. (6 points) Calculate the $Var[L_0]$

Solution:

 $Var[L_0] = E(Var[L_0 \mid i]) + Var(E[L_0 \mid i])$

= (0.3)(1,098,563,720) + (0.4)(1,034,064,471) + (0.3)(965,791,509)

$$+(0.3)(2644.04)^{2}+(0.4)(0)^{2}+(0.3)(-2022.49)^{2}-(186.46)^{2}$$

=1,032,932,357+3,289,655=1,036,222,012