MA 16100
 Study Guide - Exam \# 2

1 Average rate of change of $y=f(x)$ over the interval $\left[x_{1}, x_{2}\right]: \frac{\Delta y}{\Delta x}=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}$ (this is also the average velocity). Definition of derivative of $y=f(x)$ at $a: \quad f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$ or, equivalently, $f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$; interpretation of derivative:

$$
f^{\prime}(a)=\left\{\begin{array}{l}
\text { slope of tangent line the graph of } y=f(x) \text { at } a \\
\text { velocity at time } a \\
\text { (instantaneous) rate of change of } f \text { at } a
\end{array}\right.
$$

02 Derivative as a function: $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$; differentiable functions (i.e., $f^{\prime}(x)$ exists); higher order derivatives: $y^{\prime \prime}$ or equivalently $\frac{d^{2} y}{d x^{2}} ; y^{\prime \prime \prime}$ or equivalently $\frac{d^{3} y}{d x^{3}}$; etc...
3 Basic Differentiation Rules: If f and g are differentiable functions, and c is a constant:
(a) $\frac{d(c)}{d x}=0$
(b) $\frac{d(u+v)}{d x}=\frac{d u}{d x}+\frac{d v}{d x}$
(c) $\frac{d(u-v)}{d x}=\frac{d u}{d x}-\frac{d v}{d x}$
(c) Power Rule: $\frac{d\left(x^{n}\right)}{d x}=n x^{n-1}$
(d) Product Rule : $\frac{d(u v)}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}$

Quotient Rule : $\frac{d\left(\frac{u}{v}\right)}{d x}=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}$
4 Special Trig Limits :

$$
\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1
$$

$$
\lim _{\theta \rightarrow 0} \frac{\theta}{\sin \theta}=1
$$

$$
\lim _{\theta \rightarrow 0} \frac{\cos \theta-1}{\theta}=0 .
$$

Hence also $\lim _{\theta \rightarrow 0} \frac{\sin (k \theta)}{(k \theta)}=1$ and $\lim _{\theta \rightarrow 0} \frac{(k \theta)}{\sin (k \theta)}=1$. Note that $\sin k \theta \neq k \sin \theta$.
5 CHAIN RULE: If g is differentiable at x and f is differentiable at $g(x)$, then the composite function $f \circ g$ is differentiable at x and its derivative is

$$
(f \circ g)^{\prime}(x)=\{f(g(x))\}^{\prime}=f^{\prime}(g(x)) g^{\prime}(x)
$$

i.e., if $y=f(u)$ and $u=g(x)$, then $\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}$.

6 Implicit Differentiation: If an equation defines one variable as a function of the other (independent) variable, then to find the derivative of the function w.r.t. the independent variable:

Step 1 - Differentiate both sides of equation w.r.t. independent variable
Step 2 - Solve for the desired derivative

7 Logarithmic Differentiation

Step 1: Take natural \log of both sides of $y=h(x)$; simplify using Law of Logarithms
Step 2: Differentiate implicitly w.r.t x
Step 3 : Solve the resulting equation for $\frac{d y}{d x}$

8 Inverse Trig Functions - Note, for example, $\sin ^{-1} x$ is same as $\arcsin x$, but $\sin ^{-1} x \neq(\sin x)^{-1}$
(a) Definitions:
$y=\sin ^{-1} x \Longleftrightarrow \sin y=x \quad\left(-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}\right)$
$y=\cos ^{-1} x \Longleftrightarrow \cos y=x \quad(0 \leq x \leq \pi)$
$y=\tan ^{-1} x \Longleftrightarrow \tan y=x \quad\left(-\frac{\pi}{2}<x<\frac{\pi}{2}\right)$
(b) Basic Derivatives:

$$
\frac{d\left(\sin ^{-1} x\right)}{d x}=\frac{1}{\sqrt{1-x^{2}}} \quad \frac{d\left(\tan ^{-1} x\right)}{d x}=\frac{1}{1+x^{2}} \quad \frac{d\left(\cos ^{-1} x\right)}{d x}=-\frac{1}{\sqrt{1-x^{2}}}
$$

If u is a differentiable function of x, then by the Chain Rule, $\frac{d\left(\sin ^{-1} u\right)}{d x}=\frac{1}{\sqrt{1-u^{2}}} \frac{d u}{d x}$, etc.

9 Hyperbolic Trig Functions

(a) Definitions:

$$
\cosh x=\frac{e^{x}+e^{-x}}{2} \quad \sinh x=\frac{e^{x}-e^{-x}}{2} \quad \tanh x=\frac{\sinh x}{\cosh x}=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}
$$

(b) Basic Derivatives:

$$
\frac{d(\cosh x)}{d x}=\sinh x \quad \frac{d(\sinh x)}{d x}=\cosh x \quad \frac{d(\tanh x)}{d x}=\operatorname{sech}^{2} x
$$

If u is a differentiable function of x, then by the Chain Rule, $\frac{d(\cosh u)}{d x}=(\sinh u) \frac{d u}{d x}$, etc.
(c) Basic Identities:
$\cosh (-x)=\cosh x \quad \sinh (-x)=-\sinh x \quad \cosh ^{2} x-\sinh ^{2} x=1$

10 APPLICATIONS

Model 1 - Exponential Growth/Decay: $\frac{d y}{d t}=k y$ where $k=$ relative growth/decay rate
(If the rate of change of y is proportional to y, then the above differential equation holds.)

- If $k>0$, this is the law of Natural Growth (for example, population growth).
- If $k<0$, this is the law of Natural Decay (for example, radioactive decay).

All solutions to this differential equation have the form $y(t)=y(0) e^{k t}$.
(Usually need two pieces of information to determine both constants $y(0)$ and k, unless they are given explicitly.)
Half-life $=$ time it takes for radioactive substance to lose half its mass.)
Model 2 - Newton's Law of Cooling : If $T(t)=$ temperature of an object at time t and $T_{s}=$ temperature of its surrounding environment, then the rate of change of $T(t)$ is proportional to the difference between $T(t)$ and T_{s} :

$$
\frac{d T}{d t}=k\left(T(t)-T_{s}\right)
$$

The solution to this particular differential equation is always

$$
T(t)=T_{s}+C e^{k t}
$$

(Usually need two pieces of information to determine both constants C and k, unless they are given explicitly.)

1 Read problem carefully several times to understand what is asked.
2 Draw a picture (if possible) and label.
3 Write down the given rate; write down the desired rate.
4 Find an equation relating the variables.
5 Use Chain Rule to differentiate equation w.r.t to time and solve for desired rate.

Useful Formulas for Related Rates

(i) Pythagorean Theorem: $\quad c^{2}=a^{2}+b^{2}$

(ii) $\underline{\text { Similar Triangles: }} \quad \frac{a}{b}=\frac{A}{B}$

(iii) Formulas from Geometry:

$A=\pi r^{2}$
$C=2 \pi r$

Sphere of radius r

$V=\frac{4}{3} \pi r^{3}$
$S=4 \pi r^{2}$ (surface area of sphere)

Cylinders and Cones:

$V=\pi r^{2} h$

$V=\frac{1}{3} \pi r^{2} h$

Additional Differentiation Formulas

(u is a differentiable function of x)

$$
\begin{array}{|l|l|l||}
\hline \hline \frac{d\left(u^{n}\right)}{d x}=n u^{n-1} \frac{d u}{d x} & \frac{d\left(e^{u}\right)}{d x}=e^{u} \frac{d u}{d x} & \frac{d\left(a^{u}\right)}{d x}=a^{u}(\ln a) \frac{d u}{d x} \\
\hline \hline
\end{array}
$$

$\frac{d(\ln u)}{d x}=\frac{1}{u} \frac{d u}{d x}$	$\frac{d\left(\log _{a} u\right)}{d x}=\frac{1}{u \ln a} \frac{d u}{d x}$

$$
\begin{array}{||c|c|c|}
\hline \hline \frac{d(\sin u)}{d x}=(\cos u) \frac{d u}{d x} & \frac{d(\cos u)}{d x}=(-\sin u) \frac{d u}{d x} & \frac{d(\tan u)}{d x}=\left(\sec ^{2} u\right) \frac{d u}{d x} \\
\hline
\end{array}
$$

$$
\frac{d(\csc u)}{d x}=(-\csc u \cot u) \frac{d u}{d x}\left|\frac{d(\sec u)}{d x}=(\sec u \tan u) \frac{d u}{d x}\right| \frac{d(\cot u)}{d x}=\left(-\csc ^{2} u\right) \frac{d u}{d x}
$$

