MA 16100

Study Guide - Exam # 1

(1) Review of Algebra:

- (a) Equalities, inequalities, absolute values
- (b) Distance between $P(x_1, y_1)$ and $P(x_2, y_2)$ is $|PQ| = \sqrt{(x_2 x_1)^2 + (y_2 y_1)^2}$.
- (c) Equations of lines:
 - (i) Point-Slope Form: $y y_1 = m(x x_1)$
 - (ii) Slope-Intercept Form: y = mx + b
- (d) $L_1||L_2 \iff m_1 = m_2 \; ; \; L_1 \perp L_2 \iff m_2 = -\frac{1}{m_1}$
- (e) Equation of a circle: $(x-h)^2 + (y-k)^2 = r^2$.

(2) Review of Trigonometry:

(a) Length of arc subtended by θ : $a = r\theta$

(b) Definition of trig functions $(\cos \theta, \sin \theta, \tan \theta, \csc \theta, \sec \theta, \cot \theta)$; basic trig values of well-know angles.

1

(c) Basic trig identities (including):

(i)
$$\begin{cases} \sin^2 \theta + \cos^2 \theta = 1 \\ \tan^2 \theta + 1 = \sec^2 \theta \end{cases}$$

(ii)
$$\begin{cases} \sin(-\theta) = -\sin\theta \\ \cos(-\theta) = \cos\theta \end{cases}$$

(iii)
$$\begin{cases} \sin(\theta + 2\pi) = \sin \theta \\ \cos(\theta + 2\pi) = \cos \theta \end{cases}$$

(iv)
$$\begin{cases} \sin 2\theta = 2\sin\theta \cos\theta \\ \cos 2\theta = \cos^2\theta - \sin^2\theta \end{cases}$$

(v)
$$\begin{cases} \sin^2 \theta = \frac{1 - \cos 2\theta}{2} \\ \cos^2 \theta = \frac{1 + \cos 2\theta}{2} \end{cases}$$

(3) Functions

(a) Functions; Vertical Line Test; domain and range of a function; piecewise defined functions; increasing and decreasing functions;

Symmetry: $f(x) = f(-x) \implies f$ is even (i.e symmetric about y-axis)

 $f(-x) = -f(x) \implies f$ is odd (i.e symmetric about the origin, hence graph is the same if rotated 180°)

(b) Types of functions (linear, polynomial, rational, power, algebraic, trig, exponential, logarithmic, transcendental) and how to identify.

(4) Transformations of Functions y = f(x)

- (I) Vertical Shift (c > 0)
 - (a) $y = f(x) + c \implies shift f(x)$ vertically c units up.
 - (b) $y = f(x) c \implies shift f(x)$ vertically c units down.

- (II) Horizontal Shift (c > 0)
 - (a) $y = f(x c) \implies shift f(x)$ horizontally c units right.
 - (b) $y = f(x + c) \implies shift f(x)$ horizontally c units left.

(III) Vertical Stretch/Shrink (c > 1)

- (a) $y = cf(x) \implies stretch f(x)$ vertically by a factor c.
- (b) $y = \frac{1}{c} f(x) \implies shrink f(x)$ vertically by a factor c.

(IV) Horizontal Stretch/Shrink (c > 1)

- (a) $y = f(cx) \implies shrink f(x)$ horizontally by a factor c.
- (b) $y = f\left(\frac{x}{c}\right) \implies stretch \ f(x)$ horizontally by a factor c.

(V) Reflections

- (a) $y = -f(x) \implies reflect f(x)$ about x-axis
- (b) $y = f(-x) \implies reflect f(x)$ about y-axis

(5) Combinations of functions; composite function $(f \circ g)(x) = f(g(x))$; Law of Exponents; $y = e^x$; exponential functions $y = a^x$ (a > 0 fixed):

(6) One-to-one functions; Horizontal Line Test; inverse functions; finding the inverse of a 1-1 function; graphing inverse functions:

(7) Logarithmic functions to base a: $y = \log_a x \ (a > 0, a \neq 1)$:

(8) Logarithm formulas:

$$\log_a x = y \iff a^y = x$$
$$\log_a(a^x) = x, \text{ for every } x \in \mathbb{R}$$
$$a^{\log_a x} = x, \text{ for every } x > 0$$

(9) Law of Logarithms; Natural logarithm function $y = \ln x$;

Change of Base Formula: $\log_a x = \frac{\ln x}{\ln a}$

(10) Slopes of secant lines; approximating slopes of tangent lines using slopes of secant lines; average velocity.

4

(11) Finite Limits

(a)
$$\lim_{x \to a} f(x) = L$$

(b)
$$\lim_{x \to a^+} f(x) = L$$

(c)
$$\lim_{x \to a^{-}} f(x) = L$$

Recall:

$$\lim_{x \to a} f(x) = L \iff \lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x) = L$$

(12) Infinite Limits

(a)
$$\lim_{x \to a} f(x) = \infty$$

(b)
$$\lim_{x \to a^+} f(x) = \infty$$

(c)
$$\lim_{x \to a^{-}} f(x) = \infty$$

(Similar definitions for $-\infty$)

Remark: The line x=a is a vertical asymptote of f(x) if at least one of $\lim_{x\to a} f(x)$ or $\lim_{x\to a^+} f(x)$ or $\lim_{x\to a^-} f(x)$ is ∞ or $-\infty$.

5

(13) Limit Laws; computing limits using Limit Laws;

Squeeze Theorem : If $f(x) \leq g(x) \leq h(x)$ and $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L$, then $\lim_{x \to a} g(x) = L$

(14) f continuous at a (i.e. $\lim_{x\to a} f(x) = f(a)$); f continuous on an interval; f continuous from the left at a (i.e. $\lim_{x\to a^-} f(x) = f(a)$) or continuous from the right at a (i.e. $\lim_{x\to a^+} f(x) = f(a)$); jump discontinuity, removable discontinuity, infinite discontinuity:

Limit Composition Theorem: If f is continuous at b, where $\lim_{x\to a}g(x)=b$, then $\lim_{x\to a}f(g(x))=f\left(\lim_{x\to a}g(x)\right)$.

- (15) Limits at Infinity
 - (a) $\lim_{x \to \infty} f(x) = L$

(b) $\lim_{x \to -\infty} f(x) = L$

Remark: The line y = L is a horizontal asymptote of f(x).

(16) Intermediate Value Theorem: If f is continuous on the interval [a, b] and N is any value between f(a) and f(b), then there is a number c, with a < c < b such that f(c) = N.

(i.e., f(x) takes on every value between f(a) and f(b))