MA 16100

Study Guide - Exam \# 2
(1) Average rate of change of $y=f(x)$ over the interval $\left[x_{1}, x_{2}\right]: \frac{\Delta y}{\Delta x}=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}$; average velocity. Definition of derivative of $y=f(x)$ at $a: \quad f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$ or, equivalently, $f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$; interpretation of derivative:

$$
f^{\prime}(a)=\left\{\begin{array}{l}
\text { slope of tangent line the graph of } y=f(x) \text { at } a \\
\text { velocity at time } a \\
\text { (instantaneous) rate of change of } f \text { at } a
\end{array}\right.
$$

(2) Derivative as a function: $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$; differentiable functions (i.e., $f^{\prime}(x)$ exists); higher order derivatives.

(3) Differentiation Formulas

(1) $\frac{d(c)}{d x}=0$
(2) $\frac{d\left(x^{n}\right)}{d x}=n x^{n-1}$
(3) $\frac{d\left(e^{x}\right)}{d x}=e^{x}$
(4) $\frac{d(\sin x)}{d x}=\cos x$
(5) $\frac{d(\cos x)}{d x}=-\sin x$
(6) $\frac{d(\tan x)}{d x}=\sec ^{2} x$
(7) $\frac{d(\sec x)}{d x}=\sec x \tan x$
(8) $\frac{d(\csc x)}{d x}=-\csc x \cot x$
(9) $\frac{d(\cot x)}{d x}=-\csc ^{2} x$
(10) $\frac{d\left(a^{x}\right)}{d x}=a^{x}(\ln a)$
(11) $\frac{d(\ln x)}{d x}=\frac{1}{x}$
(12) $\frac{d\left(\log _{a} x\right)}{d x}=\frac{1}{x \ln a}$
(13) $\frac{d\left(\sin ^{-1} x\right)}{d x}=\frac{1}{\sqrt{1-x^{2}}}$
(14) $\frac{d\left(\cos ^{-1} x\right)}{d x}=-\frac{1}{\sqrt{1-x^{2}}}$
(15) $\frac{d\left(\tan ^{-1} x\right)}{d x}=\frac{1}{1+x^{2}}$
(4) Differentiation Rules: Suppose f and g are differentiable functions, and c is a constant.
(a) Constant Rule: $\frac{d(c)}{d x}=0$
(b) Sum Rule: $\frac{d(u+v)}{d x}=\frac{d u}{d x}+\frac{d v}{d x}$
(c) Difference Rule: $\frac{d(u-v)}{d x}=\frac{d u}{d x}-\frac{d v}{d x}$
(d) Product Rule: $\frac{d(u v)}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}$
(e) Quotient Rule: $\frac{d\left(\frac{u}{v}\right)}{d x}=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}$
(5) Special Trig Limits:

$$
\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1 \quad \lim _{\theta \rightarrow 0} \frac{\theta}{\sin \theta}=1
$$

$$
\lim _{\theta \rightarrow 0} \frac{\cos \theta-1}{\theta}=0 .
$$

(6) CHAIN RULE : If g is differentiable at x and f is differentiable at $g(x)$, then the composition function $f \circ g$ is differentiable at x and its derivative is

$$
f(g(x))^{\prime}=f^{\prime}(g(x)) g^{\prime}(x)
$$

i.e., if $y=f(u)$ and $u=g(x)$, then $\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}$.
(7) Implicit Differentiation : Given an equation with two variables that defines one variable as a function of the other (independent) variable, differentiate the equation with respect to the independent variable using the Chain Rule (if $y=y(x)$, then $\frac{d\left(y^{n}\right)}{d x}=n y^{n-1} \frac{d y}{d x}$) and then solve for the desired derivative.

(8) Logarithmic Differentiation

Step 1: Take the natural \log of both sides of $y=f(x)$ and simplify using Law of Logarithms
Step 2: Differentiate implicitly w.r.t x
Step 3 : Solve the resulting equation for $\frac{d y}{d x}$

(9) Applications

(a) Physics: If $s=f(t)=$ position of an object moving in a straight line then $v=\frac{d s}{d t}=$ velocity; $\quad a=\frac{d v}{d t}=\frac{d^{2} s}{d t^{2}}=$ acceleration.
(b) Economics: If $C(x)=$ cost to produce x units, then $C^{\prime}(x)=\frac{d C}{d x}=$ marginal cost function; Basic formula $C(n+1)-C(n) \approx C^{\prime}(n)$, where $C(n+1)-C(n)=$ exact cost to produce the $(n+1)^{s t}$ item and $C^{\prime}(n)=$ marginal cost of producing n units.
(c) Biology: If $n(t)=$ population at time t, then $\frac{d n}{d t}=$ population growth rate.
(10) Exponential Growth/Decay: $\frac{d y}{d t}=k y$ if $k>0$ this is the law of natural growth; while if $k<0$ this is the law of natural decay. The solutions are all of the form $y(t)=C e^{k t}$.
(11) Compound Interest: An initial amount of A_{0} dollars is invested in an account earning an interest rate of r compounded n times per year for t years will be

$$
A(t)=A_{0}\left(1+\frac{r}{n}\right)^{n t}
$$

If the interest is compounded continuously, then $\quad A(t)=A_{0} e^{r t}$.
Recall that $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e$.
(12) Newton's Law of Cooling: If $T(t)$ is the temperature of the object at time t and if $T_{s}=$ temperature of the environment, then

$$
\frac{d T}{d t}=k\left(T-T_{s}\right)
$$

All solutions have the form $T(t)=T_{s}+C e^{k t}$.

