(1) Functions \(y = f(x) \), \(x = \text{independent} \) variable, \(y = \text{dependent} \) variable; **domain** of a function (all the values of the independent variable for which the function is defined, i.e., makes sense); **range** of a function (all the values assumed by the dependent variable).

(2) Composition of functions \(f(g(x)) \).

(3) Distance between \(P(x_1, y_1) \) and \(Q(x_2, y_2) \) is \(D = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \).

(4) Graph of a function \(y = f(x) \) (plot points); graphing parabolas \(y = Ax^2 + Bx + C \) (parabola opens up if \(A > 0 \), down if \(A < 0 \); vertex is \(x = -\frac{B}{2A} \)); polynomials are functions of the form \(p(x) = a_nx^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0 \); rational functions are quotients of two polynomials \(\frac{p(x)}{q(x)} \); Vertical Line Test (geometric way of determining if a curve is the graph of a function).

(5) **Linear Functions** are functions that change at a constant rate, hence has the form \(y = mx + b \) and its graph is a line; slope \(m \) of the line through \((x_1, y_1) \) and \((x_2, y_2) \) is \(m = \frac{y_2 - y_1}{x_2 - x_1} \).

(6) Equations of lines:
 (i) Slope-Intercept Form: \(y = mx + b \)
 (Use this one when you know the slope \(m \) and the \(y \)-intercept \(b \).)
 (ii) Point-Slope Form: \(y - y_0 = m(x - x_0) \)
 (Use this one when you know the slope \(m \) and a point \((x_0, y_0) \) on the line.)

(7) Two lines, \(L_1 \) and \(L_2 \), with slopes \(m_1 \) and \(m_2 \), respectively are **parallel** if \(m_1 = m_2 \); they are **perpendicular** if \(m_2 = -\frac{1}{m_1} \).

(8) **Functional Models** (Section 1.4)

 How to Set Up Model:
 (a) READ problem carefully several times to understand what is being asked for and what is given.
 (b) Draw a diagram (if possible) and label all variables; or identify all variables.
 (c) Write down the desired function (usually it will have 2 independent variables).
 (d) Write down information that is given and use this to eliminate one of the variables in Step (c).
 Now your desired function is a function of **one** independent variable.

(9) Proportionality:
 - \(Q \) is **directly proportional** to \(x \) if \(Q = kx \), for some constant \(k \)
 - \(Q \) is **inversely proportional** to \(x \) if \(Q = \frac{k}{x} \), for some constant \(k \)
 - \(Q \) is **jointly proportional** to \(x \) and \(y \) if \(Q = kxy \), for some constant \(k \)

(10) Law of Supply and Demand

 continue on next page...
(11) **Limits**

(a) \(\lim_{x \to c} f(x) = L \) means that as \(x \to c \) from the right or left of \(c \), the values of \(f(x) \) get closer and closer to \(L \). Note that \(f(x) \) does not have to be defined at the point \(c \).

(b) Know the Algebraic Properties of limits (page 66).

(c) \(\lim_{x \to +\infty} f(x) = L \) means that as \(x \to +\infty \), the values of \(f(x) \) get closer and closer to \(L \) (hence \(y = L \) is a horizontal asymptote).

(d) \(\lim_{x \to -\infty} f(x) = M \) means that as \(x \to -\infty \), the values of \(f(x) \) get closer and closer to \(M \) (hence \(y = M \) is a horizontal asymptote).

(e) To compute limits of the only for the types in (c) and (d), use either the **Dominant Term Rule** or the **High School Rule**:

For example, consider \(\lim_{x \to +\infty} \frac{6x - x^4 - 2}{3x^4 - 1000x^2 + 1} \)

Dominant Term Rule: The dominant term in the numerator is \(-x^4 \); while the dominant term in the denominator is \(3x^4 \). Hence

\[
\lim_{x \to +\infty} \frac{6x - x^4 - 2}{3x^4 - 1000x^2 + 1} = \lim_{x \to +\infty} \frac{-x^4}{3x^4} = \lim_{x \to +\infty} \frac{-1}{3} = -\frac{1}{3}
\]

High School Rule: The “highest power” in the denominator is \(x^4 \) so divide numerator and denominator by \(x^4 \) and get:

\[
\lim_{x \to +\infty} \frac{6x - x^4 - 2}{3x^4 - 1000x^2 + 1} = \lim_{x \to +\infty} \frac{6x}{3x^4} - \frac{x^4}{3x^4} - \frac{2}{3x^4} = \lim_{x \to +\infty} \frac{6}{3x^3} - \frac{1}{3} - \frac{2}{x^4} = -\frac{1}{3}
\]

(f) One-sided limits: \(\lim_{x \to c^+} f(x) = L \) and \(\lim_{x \to c^-} f(x) = M \);

\(\lim_{x \to c} f(x) = L \) exists if and only if both the left and right-hand limits exist and are equal.

(g) \(\lim_{x \to c} f(x) = +\infty \) means as \(x \to c \), the values of \(f(x) \) get larger and larger without bound (\(x = c \) is a vertical asymptote).

(h) \(\lim_{x \to c} f(x) = -\infty \) means as \(x \to c \), the values of \(f(x) \) get larger and larger negatively without bound (\(x = c \) is a vertical asymptote).

(12) \(f(x) \) is **continuous** at \(x = c \) if

(i) \(f(c) \) is defined

(ii) \(\lim_{x \to c} f(x) \) exists

(iii) \(\lim_{x \to c} f(x) = f(c) \)

(13) Difference quotient of \(f(x) \) is \(DQ = \frac{f(x + h) - f(x)}{h} \); it represents either the *average rate of change* of \(f(x) \) from \(x \) to \(x + h \) or it is the *slope of the secant line* through the point \((x, f(x))\) and \((x + h, f(x + h))\).

(14) The **derivative** of \(y = f(x) \) is \(f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} \). Other notations for the derivative are \(\frac{df}{dx} \) or \(\frac{dy}{dx} \); the derivative represents the instantaneous rate of change of \(f(x) \) at a point or the slope of the tangent line at a point.