(1) Consider $f(x, y)=x^{4}+y^{4}-4 x y+1$. Show that f has a local minimum at $(1,1)$ and $(-1,-1)$ and that $(0,0)$ is a saddle point of f.
(2) Find the extreme values of the function $f(x, y)=x^{2}+2 y^{2}$ on the circle $x^{2}+y^{2}=1$. Answer: $f(0, \pm 1)=2$ is the maximum, $f(\pm 1,0)=1$ is the minimum value.
(3) Find the area of one loop of the rose $r=\cos (2 \theta)$ sketched below. Answer: $\frac{\pi}{8}$

(4) Find the value of the integral $I=\int_{0}^{\sqrt{2}} \int_{y^{2}}^{2} y e^{x^{2}} d x d y$ by interchanging the order of integration. Answer:

$$
I=\int_{0}^{2} \int_{0}^{\sqrt{x}} y e^{x^{2}} d y d x=\frac{1}{4}\left(e^{4}-1\right) .
$$

See also similar problems on page: 996 (15.3(\#49-54)).
(5) Use the midpoint rule with $m=n=2$ to approximate

$$
\iint_{R}\left(x^{2}-1\right) y d A
$$

where R is the region $\{(x, y): 0 \leq x \leq 4, \quad 2 \leq y \leq 4\}$.
Asnwer: 96
(6) Let R be the region in the first quadrant bounded by $x=0, x-y=0, x^{2}+y^{2}=9$ and $x+y=6$. Evaluate

$$
\iint_{R} \frac{x+y}{x^{2}+y^{2}} d A
$$

Answer: $\frac{3}{2} \pi-3$
(7) Find the center of mass (\bar{x}, \bar{y}) of the semicircular lamina described by $\left\{(x, y): x^{2}+y^{2} \leq a^{2}, y \geq 0\right\}$ if its density at the point (x, y) is $\rho(x, y)=\sqrt{x^{2}+y^{2}}$.

Answer: $\bar{x}=0, \quad \bar{y}=\frac{3 a}{2 \pi}$
(8) Find the area of the region described by the intersection of two disks bounded by $x^{2}+y^{2}=x$ and $x^{2}+y^{2}=y$. Answer: $\frac{\pi}{8}-\frac{1}{4}$
(9) Find a, b, c, d, e, f, g, h so that

$$
\int_{0}^{1} \int_{0}^{y} \int_{\sqrt{y}}^{1} F(x, y, z) d x d z d y=\int_{0}^{1} \int_{a}^{b} \int_{c}^{d} F(x, y, z) d y d x d z=\int_{0}^{1} \int_{e}^{f} \int_{g}^{h} F(x, y, z) d z d y d x
$$

Answer: $a=\sqrt{z}, b=1, c=z, d=x^{2}, e=0, f=x^{2}, g=0, h=y$.
(10) Find the volume the solid that lies above the cone $z=\sqrt{x^{2}+y^{2}}$ below the sphere $x^{2}+y^{2}+z^{2}=2 z$. Answer: π
(11) Let T be the solid region in the first octant that is bounded by the planes $y=2, x=0, y=2 x, z=0$, and $z=2 y$. What is the value of the tripple integral $\iiint_{T} x d V$? Answer: 1
(12) Let c be a constant such that $0<c<\pi / 2$ or $\pi / 2<c<\pi$. Show that the equation of the surface $\phi=c$ converted to rectangular coordinates becomes $z=\cot (c) \sqrt{x^{2}+y^{2}}$.
(13) A lamina L occupies the triangular region in the $x y$-plane with vertices $(0,0),(0,3)$ and (3,3). If the mass density at (x, y) is $\rho(x, y)=x+2 y$, then show that the y-coordinate of the center of mass of L is equal to $\frac{9}{4}$.
(14) Let E be the solid region enclosed by the paraboloid $z=x^{2}+y^{2}$ and the plane $2 x+z=4$. Find the triple integral in cylindrical coordinates that gives the volume $V(E)$ of solid E.

Answer:

$$
V(E)=\int_{0}^{2 \pi} \int_{0}^{-\cos \theta+\sqrt{4+\cos ^{2} \theta}} \int_{r^{2}}^{4-2 r \cos \theta} r d z d r d \theta
$$

(15) Convert

$$
\int_{0}^{3} \int_{-\sqrt{9-x^{2}}}^{\sqrt{9-x^{2}}} \int_{0}^{\sqrt{x^{2}+y^{2}}} x y z d z d y d x
$$

to spherical coordinates.
Answer:

$$
\int_{-\pi / 2}^{\pi / 2} \int_{\pi / 4}^{\pi / 2} \int_{0}^{3 / \sin \phi} \rho^{5} \cos \phi \sin ^{3} \phi \cos \theta \sin \theta d \rho d \phi d \theta
$$

(16) What is the value of $\int_{-2}^{2} \int_{0}^{\sqrt{4-y^{2}}} \int_{-\sqrt{4-x^{2}-y^{2}}}^{\sqrt{4-x^{2}-y^{2}}} y^{2} \sqrt{x^{2}+y^{2}+z^{2}} d z d x d y$?

Answer: $\frac{64 \pi}{9}$.
(17) Evaluate $\iiint_{E} \sqrt{x^{2}+z^{2}} d V$, where E is the region bounded by the paraboloid $y=x^{2}+z^{2}$ and the plane $y=4$.

Answer: $\frac{128 \pi}{15}$.
(18) Find the surface area of the part of the paraboloid $z=x^{2}+y^{2}$ that lies under the plane $z=9$. Answer: $\frac{\pi}{6}(37 \sqrt{37}-1)$.
(19) Find K, L, M, and N so that

$$
\int_{0}^{2} \int_{1-(x / 2)}^{1-\left(x^{2} / 4\right)} f(x, y) d y d x=\int_{K}^{L} \int_{M}^{N} f(x, y) d x d y
$$

Answer: $K=0, L=1, \quad M=2-2 y, \quad N=2 \sqrt{1-y}$.
(20) Write the double integral in polar coordinates representing the area of the planar region bounded on the right by $x^{2}+y^{2}=2$ and bounded on the left by $x=1$.

Answer: $\int_{-\pi / 4}^{\pi / 4} \int_{\sec \theta}^{\sqrt{2}} r d r d \theta=\frac{\pi}{2}-1$.

