Final review ${ }^{1}$

1. Consider

$$
\left[\begin{array}{cc}
2 & r \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
2 \\
s
\end{array}\right]
$$

Determine r, s so that the system is consistent; is inconsistent; has a unique solution; has infinitely many solutions.

Augmented matrix:

$$
\left[\begin{array}{cc|c}
2 & r & 2 \\
1 & -1 & s
\end{array}\right] \rightarrow\left[\begin{array}{cc|c}
1 & -1 & s \\
2 & r & 2
\end{array}\right] \rightarrow\left[\begin{array}{cc|c}
1 & -1 & s \\
0 & r+2 & 2-2 s
\end{array}\right]
$$

2. If

$$
\left[\begin{array}{ll}
a+b & c+d \\
c-d & a-b
\end{array}\right]=\left[\begin{array}{cc}
4 & 6 \\
10 & 2
\end{array}\right],
$$

find a, b, c, d.
3. Show that
A. If any 2×2 matrices A, B are symmetric, then $A B-B A$ can never be I_{2}.
B. For any $n \times n$ matrices $A, B, \operatorname{Trace}\left(A^{T} A\right) \geq 0$.
4. Find two different 2×2 matrices so that $A^{2}=I_{2}$; Find two different 2×2 matrices so that $A^{2}=O$.
5. For any square matrix A, show $A-A^{T}$ is skew-symmetric.
6. Let A, B be $n \times n$ symmetric matrices, show that $A B$ is symmetric iff $A B=B A$.
7. Find a row/col echelon form of

$$
\left[\begin{array}{cc}
-1 & 2 \\
2 & -1 \\
2 & -2
\end{array}\right]
$$

8. Solve

$$
\left[\begin{array}{llll}
1 & 2 & 3 & 1 \\
1 & 3 & 0 & 1 \\
1 & 0 & 2 & 1
\end{array}\right] x=\left[\begin{array}{l}
8 \\
7 \\
3
\end{array}\right] .
$$

Reduced row echelon form of the augmented matrix: $\left[\begin{array}{ccccc}1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 2 \\ 0 & 0 & 1 & 0 & 1\end{array}\right]$

[^0]9. Assume $r \neq 2$. Then the inverse of $\left[\begin{array}{ll}1 & 2 \\ r & 4\end{array}\right]$ is equal to
A. $\left[\begin{array}{ll}1 & 2 \\ r & 4\end{array}\right]$
B. $\left[\begin{array}{cc}-2 & 1 \\ \frac{r}{2} & -\frac{1}{2}\end{array}\right]$
C. $\frac{1}{r-2}\left[\begin{array}{ll}2 & 1 \\ \frac{r}{2} & \frac{1}{2}\end{array}\right]$
D. $\frac{1}{r-2}\left[\begin{array}{cc}-2 & 1 \\ \frac{r}{2} & -\frac{1}{2}\end{array}\right]$
E. $\frac{1}{r-2}\left[\begin{array}{cc}-2 & \frac{r}{2} \\ 1 & -\frac{1}{2}\end{array}\right]$
10. Compute

$$
\operatorname{det}\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

6 terms of $(\pm) a_{1-} a_{2-} a_{3-} .6$ permutations, even: $123,231,312$, odd: $132,213,321$.

$$
\begin{aligned}
\operatorname{det}(A) & =a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32} \\
& -a_{11} a_{23} a_{32}-a_{12} a_{21} a_{33}-a_{13} a_{22} a_{31} \\
\operatorname{det}(A) & =-\operatorname{det}\left(A_{r_{i} \leftrightarrow r_{j}}\right)(i \neq j) \\
\operatorname{det}(A) & =\frac{1}{k}\left(A_{k r_{i} \rightarrow r_{i}}\right)(k \neq 0) \\
\operatorname{det}(A) & =\operatorname{det}\left(A_{k r_{i}+r_{j} \leftrightarrow r_{j}}\right)(i \neq j)
\end{aligned}
$$

11. Compute

$$
\left|\begin{array}{cccc}
1 & 2 & -3 & 4 \\
-4 & 2 & 1 & 3 \\
1 & 0 & 0 & -3 \\
2 & 0 & -2 & 3
\end{array}\right|=8
$$

12. Compute

$$
|A|=\left|\begin{array}{lll}
0 & 0 & 1 \\
0 & 2 & 0 \\
3 & 0 & 0
\end{array}\right|=-6
$$

Find $\operatorname{adj}(A)$ and A^{-1}.

$$
A^{-1}=\left[\begin{array}{ccc}
0 & 0 & \frac{1}{3} \\
0 & \frac{1}{2} & 0 \\
1 & 0 & 0
\end{array}\right]
$$

13. Let A and B be 3×3 matrices, and $\operatorname{det}(A)=2$, $\operatorname{det}(B)=3$. Then $\operatorname{det}\left(A B^{-1}\right)=$
A. 6
B. 2
C. 3
D. $\frac{2}{3}$
E. $\frac{3}{2}$
14. Let

$$
A=\left[\begin{array}{ccc}
2 & a & 3 \\
5 & b & -1 \\
1 & c & 1
\end{array}\right], \mathbf{b}=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right], \quad A \mathbf{x}=\mathbf{b}
$$

If $\operatorname{det}(A) \neq 0$, then the first entry of \mathbf{x} is equal to
A. $-b+17 c-6 a$
B. $5 /(-b+17 c-6 a)$
C. 0
D. 1
E. $2 b-5 a$
15. Let

$$
\left[\begin{array}{cc}
2 & 3 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
3 \\
-1
\end{array}\right]
$$

Find x_{1}.
by Cramer's rule.

$$
x_{1}=\frac{\left|\begin{array}{cc}
3 & 3 \\
-1 & -1
\end{array}\right|}{|A|}=0, x_{2}=1
$$

16. Find c_{1}, c_{2} so that

$$
c_{1}\left[\begin{array}{c}
1 \\
-2
\end{array}\right]+c_{2}\left[\begin{array}{c}
3 \\
-4
\end{array}\right]=\left[\begin{array}{c}
-5 \\
6
\end{array}\right]
$$

17. Which of the following V is a vector space?
A. $\quad V$: the set of vectors $\left[\begin{array}{l}x \\ y\end{array}\right]$ with $x \leq 0$, with the usual operations in R^{2}.
B. V : the set of vectors $\left[\begin{array}{l}x \\ y\end{array}\right]$ with $x+y=1$, with the usual operations in R^{2}.
C. V : the set of all matrices $\left[\begin{array}{cc}a & b \\ b+1 & d\end{array}\right]$ with regular matrix operaitons.
D. V : the set of all positive real numbers, with \oplus defined by $u \oplus v=u v$, and $c \odot u=u^{c}$.
E. $\quad V$: all $n \times n$ nonsingular matrices.
18. Is $A=\left[\begin{array}{cc}5 & 1 \\ -1 & 9\end{array}\right]$ in $\operatorname{span}\left\{\left[\begin{array}{cc}1 & -1 \\ 0 & 3\end{array}\right],\left[\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right],\left[\begin{array}{cc}2 & 2 \\ -1 & 1\end{array}\right]\right\}$? Are these four matrices linearly dependent?
19. For what values of c are the vectors $[-1,0,-1],[2,1,2],[1,1, c]$ linearly independent?
20. Find a basis for

$$
V=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right],\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right],\left[\begin{array}{c}
11 \\
10 \\
7
\end{array}\right],\left[\begin{array}{l}
7 \\
6 \\
4
\end{array}\right]\right\} .
$$

Find a basis for V and a basis for V^{\perp}.
For V, use the reduced row echelon form:

$$
\left[\begin{array}{cccc}
1 & 3 & 11 & 7 \\
2 & 2 & 10 & 6 \\
2 & 1 & 7 & 4
\end{array}\right] \rightarrow\left[\begin{array}{llll}
1 & 0 & 2 & 1 \\
0 & 1 & 3 & 2 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

21. Find a basis for V : all vectors of the form $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ where $b=a+c$.
22. Find a basis for all 2×2 symmetric matrices.
23. Find a basis for

$$
\operatorname{span}\left\{t^{3}+t^{2}+2 t+1, t^{3}-3 t+1, t^{2}+t+2, t+1, t^{3}+1\right\}
$$

24. Find a basis for the solution space of

$$
\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
2 & 1 & -1 & 1
\end{array}\right] x=0
$$

25. Decide the row/col rank and nullity of

$$
\left[\begin{array}{cccc}
1 & -1 & 2 & 3 \\
2 & 6 & -8 & 1 \\
2 & -1 & 0 & 1
\end{array}\right]
$$

26. For what r does

$$
\left[\begin{array}{ll}
1 & r \\
2 & 1
\end{array}\right] x=0
$$

have a nontrivial solution?
27. For a $m \times n$ matrix, discuss the max/min possible rank, nullity, and number of linearly independent rows/cols.
28. Find the angle between $[-1 / \sqrt{2}, 0, a],[0,-1, b]$. For what a, b are they orthogonal? Orthonormal?
29. For what a, b is $[a, b, 2]$ orthogonal to both $[2,1,1]$ and $[1,0,1]$?
30. Orthonormalize $[2,1,1]$ and $[1,0,1]$.
31. Find an orthonormal basis for the subspace of all vectors of the form $[a, a+b, b]^{T}$.
32. Let V be a subspace of \mathbb{R}^{3} spanned by $\left\{\left[\begin{array}{c}2 \\ 1 \\ -2\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right]\right\}$. Find a basis for V^{\perp}. For $b=\left[\begin{array}{l}4 \\ 3 \\ 1\end{array}\right]$, find $\operatorname{proj}_{V} b$ and the distance between b and V.
33. Find a least squares soln to $A x=b$

$$
A=\left(\begin{array}{ccc}
1 & -1 & -1 \\
1 & 0 & 0 \\
1 & -1 & 0 \\
0 & 1 & -1
\end{array}\right), b=\left(\begin{array}{c}
7 \\
0 \\
14 \\
7
\end{array}\right)
$$

34. Find the least squares fitting for the points $(1,2),(2,5),(3,4),(4,4)$ using
A. Straight line.
B. Quadratic polynomial.
35. Which of the following functions are linear transformations:
A. $L: R_{2} \rightarrow R_{3}$ defined by $L\left(\left[u_{1}, u_{2}\right]\right)=\left[u_{1}+1, u_{2}, u_{1}+u_{2}\right]$.
B. $L: R_{3} \rightarrow R_{3}$ defined by $L\left(\left[u_{1}, u_{2}, u_{3}\right]\right)=\left[1, u_{2}, u_{1}\right]$.
C. $L: R_{3} \rightarrow R_{3}$ defined by $L\left(\left[u_{1}, u_{2}, u_{3}\right]\right)=\left[0, u_{3}, u_{2}\right]$.
D. $L: M_{n n} \rightarrow M_{n n}$ defined by $L(A)=A^{T}$.
E. $\quad L: M_{n n} \rightarrow R$ defined by $L(A)=\operatorname{det}(A)$.
F. $\quad L: M_{n n} \rightarrow R$ defined by $L(A)=A^{-1}$.
G. $\quad L: M_{22} \rightarrow R$ defined by $L(A)=a_{11}+a_{22}$.
36. Find the standard matrix representation for $L: R^{2} \rightarrow R^{2}$ defined by $L\left(\left[u_{1}, u_{2}\right]^{T}\right)=$ $\left[u_{1}-3 u_{2}, 2 u_{1}-u_{2}, 2 u_{2}\right]^{T}$.
37. A linear transformation $L: M_{22} \rightarrow M_{22}$ satisfies

$$
\begin{aligned}
& L\left(\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]\right)=\left[\begin{array}{ll}
0 & 1 \\
2 & 1
\end{array}\right], L\left(\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right]\right)=\left[\begin{array}{ll}
5 & 1 \\
2 & 3
\end{array}\right] \\
& L\left(\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\right)=\left[\begin{array}{ll}
3 & 4 \\
2 & 4
\end{array}\right], L\left(\left[\begin{array}{ll}
3 & 1 \\
1 & 2
\end{array}\right]\right)=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]
\end{aligned}
$$

Find $L\left(\left[\begin{array}{ll}4 & 5 \\ 6 & 7\end{array}\right]\right)$.
38. Consider the matrices

$$
\begin{aligned}
& {\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right],\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right],\left[\begin{array}{cc}
1 & -1 \\
2 & 4
\end{array}\right],\left[\begin{array}{ccc}
2 & 2 & 3 \\
1 & 2 & 1 \\
2 & -2 & 1
\end{array}\right]} \\
& {\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 2
\end{array}\right],\left[\begin{array}{ccc}
0 & -4 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right],\left[\begin{array}{ccc}
3 & 0 & 0 \\
2 & 3 & 0 \\
0 & 0 & 3
\end{array}\right]}
\end{aligned}
$$

A. Find the eigenvalues, eigenvectors, basis for the eigenspaces.
B. Decide if they are diagonalizable or not.
C. If yes, find P such that $P^{-1} A P=D$ is diagonal.
D. Can P be orthogonal?
39. Let $A=\left[\begin{array}{ccc}2 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & -\sin \alpha & \cos \alpha\end{array}\right]$. Find A^{-1}.
40. Let $B=P^{-1} A P$. Show that if x is an eigenvector of A then $P^{-1} x$ is an eigenvector of B.
41. Consider $A=\left[\begin{array}{cc}2+2 i & -1+3 i \\ -2 & 1-i\end{array}\right]$, (or $\left.\left[\begin{array}{cc}3 & -1+3 i \\ -1-3 i & 1\end{array}\right]\right)$
A. Find A^{-1}.
B. Find $|A|$.
C. Solve $A x=b$ where $b=\left[\begin{array}{l}2+i \\ 2-i\end{array}\right]$.
D. Find the eigenvalues and eigenvectors of A.
42. Let $A=\left[\begin{array}{ccc}-2 & -2 & 3 \\ 0 & -2 & 2 \\ 0 & 2 & 1\end{array}\right]$
A. Is A diagonalizable? If yes, diagonalize it.
B. Solve $x^{\prime}=A x$.

Eigenvectors/eigenvalues: $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right\} \leftrightarrow-2,\left\{\left[\begin{array}{c}\frac{1}{2} \\ \frac{1}{2} \\ 1\end{array}\right]\right\} \leftrightarrow 2,\left\{\left[\begin{array}{c}-7 \\ -2 \\ 1\end{array}\right]\right\} \leftrightarrow-3$.
C. For $x^{\prime}=A x$, if $x(0)=\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]$, find $x(1)$.

[^0]: ${ }^{1}$ The summary and problems do not necessarily or accurately reflect the contents or depth of the exam. The final exam will consist of multiple choice problems.

