
Spring 2012

MA 266

Review Topics - Exam # 1

(1) Special Types of First Order Equations

I. First Order Linear Equation (FOL):
dy

dt
+ p(t)y = g(t)

Solution : y =
1

µ(t)

[∫
µ(t)g(t) dt+ C

]
, where µ(t) = e

∫
p(t) dt

II. Separable Equation (SEP):
dy

dx
= h(x) g(y)

Solution :
∫ 1

g(y)
dy =

∫
h(x) dx

(The solution is usually given implicitly by the above formula. You may get additional
solutions from g(y) = 0. You must check to see if there are extra solutions.)

III. Homogeneous Equation (HOM):
dy

dx
= f(x, y) , where f(tx, ty) = f(x, y)

Solution : Let v =
y

x
. Hence y = xv and

dy

dx
= x

dv

dx
+ v.

Substitute these into
dy

dx
= f(x, y) to obtain a Separable Equation.

IV. Exact Equation (EXE): M(x, y) dx+N(x, y) dy = 0, where
∂M

∂y
=
∂N

∂x

Solution : Solution y = ϕ(x) given implicitly by ψ(x, y) = C where :



∂ψ

∂x
=M(x, y) =⇒ ψ =

∫
M(x, y) dx+ h(y)

⇓

∂ψ

∂y
= N(x, y) =

∂ψ

∂y
=

∂

∂y

(∫
M(x, y) dx+ h(y)

)

(2) Direction Fields. A solution y = ϕ(t) to the d.e.
dy

dt
= f(t, y) has slope f(t, y) at the

point (t, y). The direction field (or slope field) of the d.e. indicates the slope of solutions at



various points (t, y). The direction field may be used to give qualitative information about
the behavior of solutions as t → ∞ (or t → −∞, or t → 0, etc). Direction fields may also
be used to approximate the interval where a solution through a point (t0, y0) is defined.

(3) Applications of 1st Order Equations.

(A1) Mixing Problems : Q(t) = amount of substance in solution at time t

dQ

dt
= Rate In−RateOut = rici−roco

(A2) Exponential Growth/Decay : Q(t) = quantity present at time t

dQ

dt
= r Q

(A3) Newton’s Law of Cooling : T (t) = temperature at time t

dT

dt
= k (T − Ta)

(Ta = ambient temperature)

(A4) Falling & Rising Objects : You should be able to set up and solve simple problems

using Newton’s 2nd Law: F = m
dv

dt
. Near the surface of the Earth, the force due to

gravity is the weight of the object Fg = mg. Let Fd = magnitude of drag force.

(a) For falling objects, we usually let the positive direction be the downward direction

so m
dv

dt
= mg − Fd .

(b) For rising objects, let the positive direction be upward. For the upward portion

of the flight , m
dv

dt
= −mg − Fd ; while for the downward portion of the flight,

m
dv

dt
= −mg + Fd .
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FF = mg

F = mg
g

F
d

(ii) falling part

g d

(a) Falling Body (b) Rising Body

F
d

F = mg
g

m

m
m

(i) rising part

+ direction

+ direction



(4) Existence and Uniqueness Theorems for 1st Order Equations.

(a) THEOREM (First Order Linear). If p(t) and g(t) are continuous on an interval

α < t < β containing t0, then the IVP

{
y′ + p(t)y = g(t)
y(t0) = y0

has a unique solution

y = ϕ(t) on the interval α < t < β, for any y0.

Note: The largest such open interval containing t0 is where the solution y = ϕ(t) is
guaranteed to exist.

(b) THEOREM (First Order Nonlinear). If f(t, y) and
∂f

∂y
are continuous in some

rectangle R: α < t < β, and γ < y < δ and (t0, y0) lies inside the rectangle R, then

the IVP

{
y ′ = f(t, y)
y(t0) = y0

has a unique solution on the interval t0 − h < t < t0 + h, for

some number h > 0.

Note: The number h is not easy to find. The interval containing t0 where solution
exists can be estimated by looking at the direction field of the differential equation. To
determine the exact interval, you must solve the IVP explicitly for y.

(5) Autonomous Equations: Equations of the form
dy

dt
= F (y) (∗)

are said to be autonomous since
dy

dt
does not depend on the independent variable t. Such

equations can have constant solutions (i.e., y = K) which are called equilibrium solutions.
These solutions are found by solving F (y) = 0. (These are also called critical points.) You
should be able to find all equilibrium solutions to the autonomous d.e. (∗) and sketch non-
equilibrium solutions using the phase line of the differential equation (∗). You should also
be able to classify the stability of the equilibrium solutions as follows:

(a) Asymptotically Stable - Solutions which start near y = K will always approach y = K
as t→ ∞:

y

t
0

y = K

(b) Asymptotically Unstable - Solutions which start near y = K does not always ap-
proach y = K as t→ ∞:

y

t
0

y = K



(c) Semistable - This is a special type of unstable solution. In this case solutions on one
side of y = K will approach y = K as t→ ∞, while solutions on the other side of y = K
will approach something else:

y y

0

y = K

0
t

t

Remark. To sketch non-equilibrium solutions of (∗), you do not necessarily need direction

fields, you can use ordinary calculus. Since
dy

dt
= F (y) , the graph of F (y) vs y will determine

where the solution y = ϕ(t) is increasing (F (y) > 0) or decreasing (F (y) < 0). By the Chain

Rule,
d2y

dt2
=
dF (y)

dy
F (y) , hence a graph of

dF

dy
F will determine where the solution y = ϕ(t)

is concave up (F ′F > 0) or concave down (F ′F < 0).

(6) Euler (Tangent Line) Method. Approximate actual solution ϕ(t) to


dy

dt
= f(t, y)

y(t0) = y0

using the Euler (Tangent Line) Method :

yn = yn−1 + h f(tn−1, yn−1)

where h = step size. At each iteration, yk ≈ ϕ(tk), where tk = t0 + hk.

(7) Second Order Linear Homogeneous with Equations Constant Coefficients .

The differential equation ay′′ + by ′ + cy = 0 has Characteristic Equation ar2 + br + c = 0 .
Call the roots r1 and r2. The general solution to ay′′ + by′ + cy = 0 is as follows:

(a) If r1, r2 are real and distinct ⇒ y = C1 e
r1t + C2 e

r2t

(b) If r1 = λ+ iµ (hence r2 = λ− iµ) ⇒ y = C1 e
λt cosµt+ C2 e

λt sinµt

(c) If r1 = r2 (repeated roots) ⇒ y = C1 e
r1t + C2 te

r1t

(8) Theory of 2nd Linear Order Equations. The Wronskian is defined as

W (y1, y2)(t) =

∣∣∣∣∣∣∣
y1(t) y2(t)

y′1(t) y′2(t)

∣∣∣∣∣∣∣ .
(a) The functions y1(t) and y2(t) are linearly independent over a < t < b if W (y1, y2) ̸= 0

for at least one point in the interval.

(b) THEOREM (Existence & Uniqueness) If p(t), q(t) and g(t) are continuous in an

open interval a < t < b containing t0, then the IVP


y′′ + p(t) y′ + q(t) y = g(t)
y(t0) = y0
y′(t0) = y1

has a unique solution y = ϕ(t) defined in the open interval a < t < b.



(c) Superposition Principle If y1(t) and y2(t) are solutions to the 2nd order linear ho-
mogeneous equation P (t)y′′ + Q(t)y′ + R(t)y = 0 over the interval a < t < b, then
y = C1 y1(t) + C2 y2(t) is also a solution for any constants C1 and C2.

(d) THEOREM (Homogeneous) If y1(t) and y2(t) are solutions to the linear homoge-
neous equation P (t)y′′ +Q(t)y′ + R(t)y = 0 in some interval I and W (y1, y2) ̸= 0 for
some t1 in I, then the general solution is yc(t) = C1 y1(t) + C2 y2(t). This is usually
called the complementary solution and we say that y1(t), y2(t) form a Fundamental Set
of Solutions (FSS) to the differential equation.

(e) THEOREM (Nonhomogeneous) The general solution to the nonhomogeneous equa-
tion

P (t)y′′ +Q(t)y′ +R(t)y = G(t)

is y(t) = yc(t) + yp(t), where yc(t) = C1 y1(t) + C2 y2(t) is the general solution to the
corresponding homogeneous equation P (t)y′′+Q(t)y′+R(t)y = 0 and yp(t) is a particular
solution to the nonhomogeneous equation P (t)y′′ +Q(t)y′ +R(t)y = G(t).

(f) Useful Remark : If yp1(t) is a particular solution of P (t)y′′ + Q(t)y′ + R(t)y = G1(t)
and if yp2(t) is a particular solution of P (t)y′′ +Q(t)y′ +R(t)y = G2(t), then

yp(t) = yp1(t) + yp2(t)

is a particular solution of P (t)y′′ +Q(t)y′ +R(t)y = [G1(t) +G2(t)] .

Practice Problems

1. Determine the order of each of these differential equations; also state whether the equation is

linear or nonlinear:
(a) yy ′ + x = 1 (b) xy ′ + y = 1 (c) (y ′)3 + ty = 1 (d) y′′′ +

√
t y = 1

2. (a) Which of the functions y1(t) = t and y2(t) = −t is/are solutions of the IVP

yy ′ = t, y(0) = 0 ?

(b) Which of the functions y1(t) = t and y2(t) = −t are is/solutions of the IVP

yy ′ = t, y(1) = 1?
3. For what value(s) of r is y = erx a solution of y′′ − 5y ′ + 6y = 0 ?

4. (a) Show that y = x3 is a solution of the initial value problem y ′ = 3y2/3, y(0) = 0.

(b) Find a different solution of the initial value problem.

5. Find an explicit solution of the initial value problem x2y ′ = y2, y(1) =
1

2
. Indicate the

interval in which the solution is valid.

6. (a) Find an implicit solution of the initial value problem y ′ =
2x

2y + 1
, y(0) = 0.

(b) Find an explicit solution of the initial value problem y ′ =
2x

2y + 1
, y(0) = 0.

7. For what value(s) of a is the solution of the IVP y ′ − y + 2e−t = 0, y(0) = a bounded on the

interval t ≥ 0 ?

8. Determine whether each of the following differential equations is linear, separable, homogeneous,

and/or exact or none of these. (a) 2x+ y + (x+ 3y)
dy

dx
= 0 (b) x+ 3y + (2x+ y)

dy

dx
= 0



(c) (x+ 3y + 1)dx+ (2x+ y + 1)dy = 0 (d) 2xy + 1 + (x2 + 1)
dy

dx
= 0

(e) (y2 + 1)dy + (x2 + 1)dx = 0

9. Find implicit solutions to (a) x2 + y2 − 2xyy ′ = 0 (b) (1 + y2) dx− 2xy dy = 0

(c) x+ y2 + 2xyy ′ = 0

10. Find an implicit form of the general solution of the differential equation
dy

dx
=
x2 + y2

xy
.

11. Find an implicit solution of the IVP 2xy + 1 + (x2 + 2y)
dy

dx
= 0, y(1) = −1.

12. If xy ′ + (x+ 1)y = 2xe−x and y(1) = 0, then y(2) = ?

13. Use the given direction field to sketch the solution of the corresponding initial value problem

y ′ = f(t, y) , y(t0) = y0 for the indicated initial value (t0, y0) :
(a) (0, 0) (b) (0, 2) (c) (−1, 3) (d) (0, 4)

14. For each of the initial value problems determine the largest interval for which a unique solution

is guaranteed :

(a) y ′ − 2

t
y =

1

t
, y(1) = 0 (b) y ′ + (tan t)y = sec t, y(0) = 0

(c) y ′ +
x

x2 − 9
y =

1

x− 2
, y(0) = 1 (d) (x+ 4)y′ − xy =

1

x
, y(−2) = 1

15. For each of the initial value problems determine all initial points (t0, y0) for which a unique

solution is guaranteed in some interval t0 − h < t < t0 + h:
(a) y ′ = t2 + y2, y(t0) = y0 (b) y ′ = t/y, y(t0) = y0 (c) y ′ =

√
t2 + y2, y(t0) = y0

(d) y ′ = t1/3 + y1/3, y(t0) = y0 (e) y ′ =

√
1− y2

t− 2
, y(t0) = y0

16. Find the explicit solution of the initial value problem y ′ = y2 − 1, y(0) = −2. Where is this
solution defined ?



17. Suppose y ′ is proportional to y, y(0) = 4, and y(2) = 2. Set up and solve an initial value
problem that gives y in terms of t. For what value of t does y(t) = 3?

18. A thermometer reads 36◦ when it is moved into a 70◦ room. Five minutes later the thermometer
reads 50◦. Set up and solve an initial value problem that gives the thermometer reading t minutes
after it is moved into the room. What will it read ten minutes after it is moved into the room?

19. At time t = 0 a 500 gallon tank contains 40 pounds of salt mixed in 100 gallons of water. A
solution that contains 3 lb of salt per gallon of solution is then pumped into the tank at a constant
rate of 5 gal/min. The well-stirred mixture flows out of the tank at the rate of 3 gal/min. Set up
and solve an initial value problem that gives the amount of salt in the tank after t minutes. What
is the concentration of salt in the tank at the time the tank becomes full?

20. A huge 300 gallon radiator is full of a 60% antifreeze solution. Pure water is poured in at a
rate of 5 gal/min and the stirred mixture is drained at the same rate. How long do we pour water
into the radiator to get a 50% antifreeze solution ?
21. Set up and solve an initial value problem that gives the vertical velocity of a 128-lb parachutist
t seconds after she jumps from an airplane that is flying horizontally at an altitude of 5000 feet.
Assume that air resistance is eight times the speed and ignore horizontal motion and downward
direction is positive.

22. Consider the differential equation
dy

dt
= y(y − 2).

(a) What are the equilibrium solutions?

(b) Which equilibrium solutions are stable/unstable?

(c) Sketch the graph of the solution of the differential equation for t ≥ 0 with each of the initial
values y(0) = −2/3, y(0) = 0, y(0) = 2/3, y(0) = 4/3, y(0) = 2, y(0) = 8/3.

(d) Find the explicit solution of the initial value problem
dy

dt
= y(y − 2), y(0) = y0.

(e) For what values of t is the solution in (d) valid?

23. Consider the differential equation
dy

dt
= F (y), where the graph of F (y) is indicated below.

y

w

2−1−2 0 31

w = F ( y )
(a) What are the equlibrium solutions?

(b) Which equilibrium solutions are stable?

(c) Sketch some solutions to
dy

dt
= F (y).

24. Estimate the solution at t = 1.5 to the IVP y ′ = 2t− 5y, y(1) = −2 using the Euler Method

with h = 0.25. What is the true solution at t = 1.5 ?

25. Find the general solution to (a) y′′ − 4y′ + 4y = 0 (b) y′′ + 4y′ + 5y = 0.

26. For what value of α will the solution to the IVP


y′′ − y′ − 2y = 0
y(0) = α
y′(0) = 2

satisfy y → 0 as t→ ∞ ?

27. Find the largest open interval guaranteed by the Existence and Uniqueness Theorem for which

the initial value problem 3x2y′′ + y ′ +
1

x− 2
y =

1

x− 3
, y(1) = 3, y′(1) = 2, has a unique solution.



Answers

(1) (a) 1st order nonlinear (b) 1st order linear (c) 1st order nonlinear (d) 3rd order linear

(2) (a) y1 and y2 (b) y1 only (3) r = 2, r = 3

(4) (a) y′ = 3x2 = 3(x3)2/3 = 3y2/3 ; 0 = 3(0)2/3 (b) y ≡ 0 (5) y =
x

x+ 1
, x > −1

(6) (a) y2 + y = x2 (b) y =
−1 +

√
4x2 + 1

2
(7) a = 1 (8) (a) HOME and EXE (b)

HOME

(c) none of these types (d) FOL and EXE (e) SEP and EXE
(9) (a) (HOME) − ln |1− ( y

x
)2| = ln |x|+ C and y = x and y = −x (b) (SEP) y2 + 1 = Cx

(c) (EXE) x2 + 2xy2 = C (10)
1

2

(
y

x

)2

= ln |x|+ C (11) x2y + x+ y2 = 1

(12) y(2) = 3
2
e−2 (13) See below :

(14) (a) t > 0 (b) −π
2
< t <

π

2
(c) −3 < x < 2 (d) −4 < x < 0

(15) (a) all (t0, y0) (b) all (t0, y0) with y0 ̸= 0 (c) all (t0, y0) ̸= (0, 0) (d) all (t0, y0) with y0 ̸= 0
(e) all (t0, y0) where −1 < y0 < 1 and t0 ̸= 2

(16) y =
1 + 3e2x

1− 3e2x
, solution defined for −1

2
ln 3 < x <∞ .

(17)


y′ = ky
y(0) = 4
y(2) = 2

; y = 4e(ln 0.5)t/2, t =
2 ln 0.75

ln 0.5
≈ 0.83

(18)


T ′ = k(T − 70)
T (0) = 36
T (5) = 50

; T = 70− 34e(ln(10/17))t/5, T (10) ≈ 58.2◦

(19)

 Q ′ = 15− 3Q

100 + 2t
Q(0) = 40

; Q = 3(100+2t)−260, 000(100+2t)−3/2,
Q(200)

500
≈ 2.95 lbs/gal



(20) If Q(t) = # gals of antifreeze, then Q′ = − Q
60
, Q(0) = 180 and so Q(t) = 180e−

t
60 . newline

Hence t = −60 ln 5
6
≈ 10.94 minutes

(21)


4
dv

dt
= 128− 8v

v(0) = 0

; v = 16(1− e−2t)

(22) (a) y = 0 and y = 2 (b) y = 0 is stable, y = 2 is unstable (c) See below

(d) y =
2y0

y0 − (y0 − 2)e2t
(e) The solution is valid for all t if 0 ≤ y0 ≤ 2. If y0 > 2 or y0 < 0, the

solution is valid only for −∞ < t <
1

2
ln

(
y0

y0 − 2

)
.

(23) (a) y = 1 and y = 3 (b) only y = 1 is stable (c) See below
(24) y2 = 0.375 , true solution ϕ(1.5) = 1

25
(13− 58 e−2.5) ≈ 0.3296

2

0

y

t

y

−1

0

2

t

1

1

3

22 (c)  

23 (c) 

(25) (a) y = C1e
2t + C2te

2t (b) y = C1e
−2t cos t+ C2e

−2t sin t (26) α = −2 (27) 0 < x < 2


