Spring 2012

MA 266
Review Topics - Exam # 2 (updated)

(1) First Order Differential Equations. (Separable, 15" Order Linear, Homogeneous, Exact)

(2) Second Order Linear Homogeneous with Equations Constant Coefficients .

The differential equation ay” + by’ + cy = 0 has Characteristic Equation ar?+br+c= 0. Call the
roots r; and ry. The general solution of ay” + by’ 4+ cy = 0 is as follows:

(a)
(b)
()

If 71, ro are real and distinct = y = C} et + Oy e
If 1 =X+ip (hence ry =\ —ip) = y=CpeMcosput+ CyeMsinput
If ry =ry (repeated roots) = y = Cje™t + Cyte™!

(3) Theory of 2"¢ Linear Order Equations.

W (t) Ya(t)

Wronskian of y1, 2 is Wy, y2)(t) =

(a)
(b)

i) w(t)

The functions y(¢) and y(t) are linearly independent over a < t < b if W(yy,y2) # 0 for at
least one point in the interval.

THEOREM (Existence & Uniqueness) If p(t),q(t) and ¢(t) are continuous in an open
v +p)y +at)y = g(t)
interval o < t < /8 containing ¢y, then the IVP { y(to) = yo
/ —
y'(to) =
has a unique solution y = ¢(t) defined in the open interval o < t < f3.

Superposition Principle If y;(¢) and y,(t) are solutions of the 2"¢ order linear homogeneous
equation P(t)y" + Q(t)y' + R(t)y = 0 over the interval a < t < b, then y = Cy y1(t) + Co ya(t)
is also a solution for any constants C; and Cj.

THEOREM (Homogeneous) If y;(f) and y»(t) are solutions of the linear homogeneous
equation P(t)y" + Q(t)y + R(t)y = 0 in some interval I and W (y;,y2) # 0 for some ¢; in [,
then the general solution is y.(t) = Cy y1(t)+Cy y2(t). This is usually called the complementary
solution and we say that y,(t), y2(t) form a Fundamental Set of Solutions (FSS) to the differential
equation.

THEOREM (Nonhomogeneous) The general solution of the nonhomogeneous equation
P(t)y" + Q)Y + R(t)y = G(t)

is y(t) = ye(t) + yp(t), where y.(t) = Cyy1(t) + Caya(t) is the general solution of the corre-
sponding homogeneous equation P(t)y” + Q(t)y’ + R(t)y = 0 and y,(t) is a particular solution
of the nonhomogeneous equation P(t)y” + Q(t)y' + R(t)y = G(t).

Useful Remark : If y, (¢) is a particular solution of P(t)y” + Q(t)y' + R(t)y = G1(t) and if

Yp, (1) is a particular solution of P(t)y” + Q(t)y + R(t)y = Ga(t), then

Yp(t) = Yp (1) + Y, (1)
is a particular solution of P(t)y” + Q(t)y + R(t)y = [G1(t) + Ga(t)] .



(4)

(5)

Reduction of Order. If y,(¢) is one solution of P(t)y” + Q(t)y' + R(t)y = 0, then a second
solution may be obtained using the substitution |y = v(t)y;1(t)|. This reduces the original 2™

dv
order equation to a 1% equation using the substitution w = e Solve that first order equation for

dv
w, then since w = —, solve this 1*¢ order equation to determine the function v.

dt

Finding A Particular Solution y,(f) to Nonhomogeneous Equations.

You can always use the method of Variation of Parameters to find a particular solution y,(t) of the
linear nonhomogeneous equation y” + p(t)y’ + ¢(t)y = g(t). Variation of Parameters may require
integration techniques.

If the coefficients of the differential equation are constants rather than functions and if g(¢) has a
very special form (see table below), it is usually easier to use Undetermined Coefficients :

(a) UNDETERMINED COEFFICIENTS - IF' ay” + by’ +cy = g(t) AND g(t) is as below:

g(t) Form of y,(t)

Po(t) = amt™ + a1 t™ 4 Fag || P {AE™ + At 4 A}

e P (t) 5 {e® (Apt™ + A1 t™ 1+ -+ Ag)}

e P(t) cos Bt or e P, (t) sin St || t5{e™ [F,,(t) cos St + G (t) sin 5t]}

where s = the smallest nonnegative integer (s = 0,1 or 2) such that no term of y,(¢) is a
solution of the corresponding homogeneous equation. In other words, no term of y,(¢) is a term
of y.(t). (Fn(t), Giu(t) are both polynomials of degree m.)

(b) VARIATION OF PARAMETERS - If y;(¢) and y»(t) are two independent solutions of the homoge-
neous equation y” +p(t) y’ + q(t) y = 0, then a particular solution y,(¢) of the nonhomogeneous
equation

Y o)y +qt)y=gt) (%)

has the form

Yp(t) = wr(t) yr(t) + ua(t) (1)

where
0 yi O
) 9(t) ys , v, g(t)
ul g 77 u2 = -
Y1 Y2 Y1 Y2
(T Yi Y

Remember: Coefficient of y” in (%) must be “1” in order to use the above formulas.



mu" +vyu' + ku= F(t)
u(0) = ug, u'(0) =uy

(6) Spring-Mass Systems {

m = mass of object, ~ = damping constant, k = spring constant, F'(t) = external force Weight
w=mg, Hooke’sLaw: F,=kd,
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Undamped Free Vibrations : mu” +ku =0 (Simple Harmonic Motion)
Note that A coswpt + Bsinwyt = R cos(wot — 9), where R = v A2 + B%2 = amplitude,

2 B
wo = frequency, i period and 6 = phase shift determined by tand = —
wWo

T
[1I]| Damped Free Vibrations : mu” +~yu 4+ ku =0

(i) v* —4km >0 (overdamped ) <= distinct real roots to CE
(i) v —4km =0 (critically damped ) <= repeated roots to CE
(iii) v* —4km < 0 (underdamped ) <= complex roots to CE (motion is oscillatory)

Forced Vibrations : (F(t) = Fy coswt or F(t) = Fy sinwt, for example)

(i) mu”" +~u' +ku= F(t) (Damped) In this case if you write the general solution as u(t) =
up(t) + uoo(t), then ur(t) = Transient Solution (i.e. the part of u(t) such that ur(t) — 0
as t — 00) and ux(t) = Steady-State Solution (the solution behaves like this function in
the long run).

| k
(ii) mu” + ku= Fy coswt (Undamped) If w =wy = {/— = Resonance occurs and the
m

solution is unbounded; while if w # wy then motion is a series of beats (solution is
bounded)

(7) n’” Order Linear Homogeneous Equations With Constant Coefficients

agy™ + ary" TV 4+ a1y Fay =0 (%)
This differential equation has n independent solutions.

Characteristic Equation :  agr™ + a;r™ ' + -+ + a,_17 + a, = 0 will have n characteristic roots
that may be real and distinct, repeated, complex, or complex and repeated.



(a) For each real root r that is not repeated = get a solution of (x): e

(b) For each real root r that is repeated m times = get m independent solutions of (x):
ert tert t2ert . 2fm—lert

(c) For each complex root r = X\ +iu repeated m times = get 2m solutions of (*):

A A

eMceosput, teMcosput, -, t" teMcosut and  eMsinput, te’Msinpt, -, t™ e sin ut

(don’t need to consider its conjugate root A\ — iu)

(8) Undetermined Coefficients for n'* Order Linear Equations

This can only be used to find y,(¢) of aoy™ + ajy™ ™V + -+ +a, 1y + a,y = g(t) and g(t) one of
the 3 very SPECIAL FORMS in table in (5) above. The particular solution has the same form as
before :  y,(t) =t°[---], where s = the smallest nonnegative integer such that no term of y,(t) is
a term of y.(t), except this time s =0,1,2,...,n .

(9) Laplace Transforms

(a) Be able to compute Laplace transforms using definition :
LDy = F(s) = [ e f(t)dt
and using a table of Laplace transforms (see table on page 317) and using linearity : L£{f(t) +
g0} = L{fO)r + L{g(®)}, L{cf)} = cL{f (D)}

(b) Computing Inverse Laplace Transforms: Must be able to use a table of Laplace transforms usu-
ally together with Partial Fractions or Completing the Square, to find inverse Laplace transforms:

J(t) = L7HF(s)} .
(¢) Solving Initial Value Problems: Recall that

L{y'} = sL{y} —y(0)
L{y"} = s* L{y} — sy(0) — y'(0)

L{y"} = s> L{y} — s*y(0) — sy'(0) — 4" (0)

(d) Discontinuous Functions :

(i) Unit Step Function (Heaviside Function) : If ¢ >0, u.(t) = { (1)’ i i E
y
y = u.(t)
-1 .
o t
0 c




1, a<t<b
0, otherwise

(ii) Unit “Pulse” Function : u,(t) — up(t :{

y
‘ y=u@pu® |

0 a b

0, t<c

(iii) Translated Functions: y = g(t) = { flt—c), t>c uc(t) f(t—c).

L{uc(t) f(t—c)} = e “° F(s),where F(s) = L{f(t)}

Thus, L7He ™ F(s)} = uc(t) f(t—c), wheref(t) =L {F(s)}
A useful formula NOT in the book : L{uc(t) h(t)} = e ** L{h(t + c)}
(iv) Unit Impulse Functions: If y=4§(t —¢) (c¢>0), then L{5(t—c)}=e

() Convolutions: | £{(f*g)(t)} = £ { /0 "= 1) g(r) dT} — L{f(0)} £{g(t)}




(10) Systems of Linear Differential Equations : x'(t) = Ax(t)

(a) Rewrite a single n'" order equation po(t)y™ + pi(H)y™= D + - + p,(t)y = g(t) as a system of
1%t order equations. Use the substitution :

T = g
X1 =y xh = 13
X2 = y/ st
Let . toget 1% Order System :
: Ty = Tn-2
Xy = y(nfi) , 1
Lp = 17 {=Pn1 — pn1®2 — -+ — przn + g(t)}
0

(b) Existence & Uniqueness Theorem for Systems. If P(¢) and g(t) are continuous on an
X'(t) = P(t)x(t)
X(to) = X

interval @ < t < ( containing to, then the IVP { has a unique solution x(t)

defined on the interval a <t < .

(c¢) The set of vectors {x(l), x® ... ,x(m)} is linearly independent if the equation
kx4 kox® 4+ - 4k, x™ = 0

is satisfied only for ky = ky = --- = k,,, = 0. This means you cannot write any one of these
vectors as a linear combination of the others.

/
(d) Solve 2 x 2 systems of 1°* order equations < o ) = < a b ) ( 1 ) le,x = Ax using :
To c d To

(i) Elimination Method : Basic idea - eliminate one of the unknowns (either x; or x5) from
the original system to get an equivalent single 2"? order differential equation.

(ii) Eigenvalues & Eigenvectors Method : See (11) below for solutions via this method
and corresponding phase portraits.

Eigenvalue: If A = Z Z ), then the eigenvalues of A are the roots of

(a—A) b

A— I = o

-

Eigenvector : Vv = ( Zl > £ ( 8 ) is a nonzero solution to (A—)\I)V:(_)' )
- 2

(e) If xM(t) = < i;ég ) and if x®(t) = ( 228 ), then the Wronskian is

(1) @)1 —
W[X X ] Igl(t) .I‘Qg(t)

z11(t)  212(t) ‘ _

If x(M(¢) and x(t) are solutions of x’ = A x and W [x™, x®](#;) # 0, then the set {x1)(¢),x?(¢)}
forms a Fundamental Set of Solutions of the system and a Fundamental Matriz is

(1) = ( z11(t)  w12(t) ) .

T21 (t) T22 (t)



(11) Eigenvalue & Eigenvector Method and Phase Portraits : x’'=Ax

The following describes how to find the general solution to (x) and plot solutions (trajectories). A
plot of the trajectories of a given homogeneous system

, a b
XZ(C d)x ()

is called a phase portrait. To sketch the phase portrait, we need to find the corresponding eigen-
a b

values and eigenvectors of the matrix A = < e d ) and then consider 3 cases :

(a) A1 < Ag, real and distinct :  If vl v are e-vectors corresponding to A; and A, respec-
tively = xW(t) = eMtv ) and xP(t) = e*2t v(?) are solutions and hence general solution of

() is x(t) = C; x M (t) + Co, x @ (t) and hence if :

x(t) = CyeMt vl 4 0y ety @

dominates dominates
ast — —o0 ast — o0




(b) i =a+i6: If w=a+ib isa complex e-vector corresponding to A; then =
xM(t) = RNe {e’\ltw} = ¢! (a cos Bt — b sin ft) and
x®(t) = m {e’\ltw} = e*' (asin 0t + b cos ft) are real-valued solutions and hence general
solution of (x) is x(t) = Cy xW(t) + Cox @ (t).

If say a <0:
N P

AN L L
N7 .

(Test a point to decide which)

(¢) Ax = Ao : If there is only one linearly independent eigenvector corresponding to A, then
solutions to x’ = Ax are xW(t) =eMv and x@(t) = teMtv + eMfa | where

(A—)\lf)v =0
(A-Ml)a=v

(v is an eigenvector of A, while a is called a “generalized eigenvector” of A)

The general solution of the system (x) is x(t) = C; x MV (¢) + Cy x?(¢) and hence:
x(t) = CreMlv + Oy [te“v + et a}

dominates
as t — o0

Ifsay A <O0:

(Test a point to decide which)



(12) Particular Solutions to Nonhomogeneous Linear Systems

x'=Ax+g(t)

(a) Undetermined Coefficients for Systems The column vector g(t) = ( a(t) ) must have

9a(t)

each component function g (t) and ¢»(¢) as one of the three special forms like those for Undeter-
mined Coefficients for regular 2"¢ order equations and A must be a constant matrix. The main
difference is if say g(t) = ue* and ) is also an eigenvalue of A, then try a particular solution
of the form x, = ate +bel .

(b) Variation of Parameters for Systems : x’' = A(t)x + g(t):

x,(t) = (1) [ 07 (1) g(t)dt

where ®(¢) is a Fundamental Matrix of the homogeneous system x’ = A(t)x+ g(t) can have
any form and A need not be a constant matrix.

PRrRACTICE PROBLEMS

y' =y —2y=0
[1] For what value of « will the solution to the IVP { 4(0) = « satisfy y - 0 ast — oo ?
y'(0) =2
[2] (a) Show that y; = x and yo = 2! are solutions of the differential equation z?y” + zy’ —y = 0.
(b) Evaluate the Wronskian W (y2,v1) at z = 3.
(c) Find the solution of the initial value problem z?y” +xy —y =0, y(1) =2, y'(1) = 4.

[3] Find the largest open interval for which the initial value problem

1 1
3%y +y' + — —5» (1) =3, y/(1) = 2, has a solution.

2y:x

In Problems 4, 5, and 6 find the general solution of the homogeneous differential equations in (a) and use
the method of Undetermined Coefficients to find a particular solution y, in (b) and find the FORM of
a particular solution (c).
[4] (a) y" —5y' + 6y =0 (b) y" =5y’ +6y=1> (c) y" — by + 6y = e + cos(3t)

)

[5] (a) ¥" — 6y +9y =0 (b)y" —6y +9y =te* (c)y” — 6y + 9y = e’ + cos(3t)
[6] (a) y" — 2y +10y =0 (b) y" — 2y + 10y = e* + cos(3z) (c) y" — 2y + 10y = e* cos(3x)

7] Find the general solution to  (a) ¥ + 1y — 6y = 7e** (b) vy’ +vy' — 6y = 7Te** — 100sint
[ g y' +y — 6y y' +y — 6y

[8] Solve this IVP: y"” —y' = 4¢, y(0) =0, ¥'(0) = 0.

[9] Find the general solution to y” +y =tant, 0 <z < 7.

[10] The differential equation z%y” — 2xy’ + 2y = 0 has solutions y;(z) = x and y, = z*. Use the method
of Variation of Parameters to find a solution of z%y"” — 2xy’ + 2y = 222

[11] The differential equation 2?y” +zy' —y = 0 has one solution y;(x) = x. Use the method of Reduction
of Order to find a second (linearly independent) solution of zy” + zy’ —y = 0.
[12] For what nonnegative values of v will the the solution of the initial value problem
u 4+ yu' + 4u =0, u(0) =4, w'(0) =0 oscillate ?
[13] (a) For what positive values of k does the solution of the initial value problem
2u” 4+ ku = 3cos(2t), u(0) =0, v (0) =0, become unbounded (Resonance) ?



(b) For what positive values of k does the solution of the initial value problem
2u" 4+ u' + ku = 3 cos(2t), u(0) =0, v/ (0) =0, become unbounded (Resonance) ?
[14] Find the steady—state solution of the IVP y” + 4y’ + 4y = sint, y(0) =0, v/(0) = 0.
[15] A 4-kg mass stretches a spring 0.392 m. If the mass is released from 1 m below the equilibrium

position with a downward velocity of 10 m/sec, what is the maximum displacement ?

In Problems 16 and 17 find the general solution of the homogeneous differential equations in (a) and use the
method of Undetermined Coefficients to find the FORM of a particular solution of the nonhomogeneous
equation in (b).
[16] (a) ¥ —y' =0 (b) y" —y =t +¢
[17] (a) y" —y" =y +y=0 (b) y" —y" —y +y = e +cost
[18] Find the solution of the initial value problem y” —2y” + 4" =0, y(0) =2, 3/'(0) =0, y"(0) = 1.
[19] Find the general solution of the differential equation y"” + 3y’ = 2.
[20] Find the general solution of y” + 4y’ = —10 cos 2t.
[21] Find a fundamental set of solutions of y® — 4y =0 .
[22] Find the Laplace transform of these functions:
(a) f(t)=3—¢e* (b) g(t)=100t> (c) h(t)=coshmt (d) k(t)= —10t3e>

[23] Find the inverse Laplace transform of

9 5 8 35+ 2
(a) F<5)—m (b) F(S)—(S_1)2 (c) F(S)—(S+1)4 (d) F@)—m
y'—y' —6y=0 y" — 2y + 2y = cost
[24] Solve these initial value problems: (a) ¢ y(0) =1 (b) ¢ y(0)=1
y'(0)=—-1 y'(0) =0
1, t<5 ) Y
@ -u={y 150 0=y -0
" t<1 ) Y
@ o +1y { e 4(0) = /(0) = 0.
() y'+y=g(t 0) = 0 and where g(¢) :
T Y=g
3 ——0 .
— t
o 2 4

(f) ¥"+4y=0(t-3), y(0)=y'(0)=0

[25] £ {/Ot 100 e~ cosw(t — 7) dT} =7

[26] If g(t) = £7{G(s)}, then £ { (SG_(?)Q} —7

/
T =T+ T2
xh = 4x1 + 9

[27] Use the Elimination Method to solve the system {

[28] Rewrite the 2" order differential equation " + 2y’ + 3ty = cost with y(0) = 1,7/(0) =4 as a
system of 1%¢ order differential equations.

[29] Find eigenvalues and corresponding eigenvectors of (a) A = < 411 1 ) (b) A= ( _f _(_i )



X2

/
[30] Find the solution of the IVP ( o )

I
VR

Find a fundamental matrix ®(t).

xll . 1 1 T . . —1
[31] Solve (@,)—(_1 1><x2>’ X(O)—< 2).
[32] Find the general solution of the system X'(t) = AX(t), where A = ( L1 )

0 1

[33] Tank # 1 initially holds 50 gals of brine with a concentration of 1 Ib/gal, while Tank # 2 initially
holds 25 gals of brine with a concentration of 3 1b/gal. Pure HoO flows into Tank # 1 at 5 gal/min. The
well-stirred solution from Tank # 1 then flows into Tank # 2 at 5 gal/min . The solution in Tank # 2

flows out at 5 gal/min. Set up and solve an IVP that gives x;(t) and x5(t), the amount of salt in Tanks #
1 and # 2, respectively, at time ¢.

[34] Tank # 1 initially holds 50 gals of brine with concentration of 1 1b/gal and Tank # 2 initially holds
25 gals of brine with concentration 3 Ib/gal. The solution in Tank # 1 flows at 5 gal/min into Tank # 2,
while the solution in Tank # 2 flows back into Tank # 1 at 5 gal/min. Set up an IVP that gives z1(¢) and
x2(t), the amount of salt in Tanks # 1 and # 2, respectively, at time ¢.

/
- . n\ (-2 0)[ 3\
[35] Find the general solution of ( 2y ) = ( L1 > ( vy > + ( | ) et
/
. . . I . 01 T 2
[36] Find a particular solution of < o ) = ( 10 ) ( v ) — ( 5 )

wn\ (20 (= Ge™*
_ . T L
[37] Find the general solution of ( . > = < 11 ) ( Lo ) ( 1 >

[38] Match the phase portraits shown below that best corresponds to each of the given systems of differential
equations:

. [0 1)L o 1 1) -
(i) % :(1 0>X;SOluthIlIX(t):Cl<1>6t+02<_1>6t

2 -1, . S 1 1
1 2)){; SOhlthIl:X(t)IC’l(l>€t+02<_1>€3t

(iii) i’z(? _(1)>i; Solution : i(t)201(§>6t+026t{(3>t+<_1 )}
< 1
1

_ )f; Solution : X(t) = C4 < cost ) et 4 O, ( sin ¢ > -

—sint
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ANSWERS

1] a=-2 [2] (b) W(z a)(3)=4; (c)y=3z—2' [3] 0<z<2
[4] (a) y = C1e® + Coe® (b)) y= At> + Bt + C (c) y = Ate* + Bcos(3t) + C'sin(3t)
[5] (a) y = C1e¥ + Cote® (b) y = (At + B)e® (c) y = Ae' + B cos(3t) + C'sin(3t)
[6] (a) y = C1e” cos(3z) + Cee”sin(3x) (b) y = Ae® + B cos(3z) + C'sin(3z)

(¢) y = x(Acos(3z) + Bsin(3x))e”
[7](a) y = Cre " + Coe® + Le* (b) y = Che ™ + Che? + 1e* 4 2cost + 14sint

[8] y = —4 + 4e' — 212 — 4t

[9] y = Cicost+ Cysint — (cost) In(sect + tant)

[10] y=22%Inz or y =22%Inx + (Cyx + Cya?)

[11] y=a‘tory=Az'+Bx, A#0

[12] 0 <~ <4

[13] (a) k = 8 (resonance) (b) NO value of k, all solutions are bounded.
[14] y = 5 (3sint — 4 cost)

[15] u(t) = cos 5t 4 2sin 5t = /5 cos (5t — 6), 6 = tan~'2 ~ 1.1 Thus amplitude = /5.

[16] (a) y = C) + Coe™ + Cyet  (b) y = t(At + B) + Cte!
[17] (a) y = Ciet + Oytet + C3e™t (b) y = At*e’ + Bcost + Csint
[18] y =3 — €' + te

1
[19] y = C) + Cycost + Cysint + gt?’ —2t

[20] y = Cy + Che ¥ + (% cos 2t — sin 225)

[21] {11:# 2 ety
12000 s 60

[22] ( ) 52 — (b> 56 (C) 2 _ 72 (d) _( 5)
[23] (a) 3(e* —e™") (b) ' +te' (c) 3t%¢™ (d) 3e'cos2t — Lesin2t
[24] (a) y= (e3t +4e7?) (b) y = z(cost — 2sint + 4e’ cost — 26 sin t)

L+(e+e%y+%@)—y+ad“®+e**@»
or y = —14 cosht + us(t)(—1 + cosh(t — 5))

(c) ¥y

(d) y=(—gsin2t+ 1) —u (t)(—gsin2(t — 1) + ) —ug (¢) (5 — 1 cos2(t — 1))
(e) y=3(1—e) —3ug(t)(1 — e D) 4 3y (t)(1 — e~ ) (f) y = Lus(t)(t)sin2(t — 3)
1008 t 3(t—T1 ¢ 37
25) g 20 | t=negmyar o [ reglt—ryar

[27] J]l(t) = 0163t + C’Q@it7 l‘g(t) = 201€3t — 202€7t

/
_ o Ty = X2 _
[28] Let 1 =y, o =¥/, then { T, = 3tz — 235+ cost where z1(0) = 1, x2(0)
29] (a) Alzs,vm:(;) ; A2:—1,v<2>:(_§)
_ m_ (0. y _ @_ [ 1
[29] (b) )\1 = —1, A% = 1 ) )\2 = —2, A% = 1

[30] x(t) =2¢3 ( ; ) +et ( _; ), O(t) = < QZZ _221 )

[31] x(t) =2¢!
D)-(2)

@ (2)-(7 ?81( 2)- G

Solution :

=4

1
0

)






f(t) = L7HF(s)}

F(s) = L{f(t)}

10.

11.

11.

12.

13.

14.

15.

16.

17.

18.

19.

at
m
tr(p>-1)
sin at
cos at

sinh at

cosh at

e™ sin bt

e cos bt

tneat

tneat

ue(t)

uc(t)f(t - C)
e f(t)

— » |~

s—a

n!
Sn+1

F(p+1)
5p+1

52 + a?

82+CL2

e “F(s)

F(s—c¢)



