MA 266 Review Topics - Exam # 2

(1) First Order Differential Equations. (Separable, 1st Order Linear, Homogeneous, Exact)

(2) Second Order Linear Homogeneous with Equations Constant Coefficients.

The differential equation ay'' + by' + cy = 0 has Characteristic Equation $ar^2 + br + c = 0$. Call the roots r_1 and r_2 . The general solution of ay'' + by' + cy = 0 is as follows:

- (a) If r_1, r_2 are real and distinct $\Rightarrow y = C_1 e^{r_1 t} + C_2 e^{r_2 t}$
- (b) If $r_1 = \lambda + i\mu$ (hence $r_2 = \lambda i\mu$) $\Rightarrow y = C_1 e^{\lambda t} \cos \mu t + C_2 e^{\lambda t} \sin \mu t$
- (c) If $r_1 = r_2$ (repeated roots) $\Rightarrow y = C_1 e^{r_1 t} + C_2 t e^{r_1 t}$

(3) Theory of 2^{nd} Linear Order Equations.

Wronskian of y_1, y_2 is $W(y_1, y_2)(t) = \begin{vmatrix} y_1(t) & y_2(t) \\ & \\ y_1'(t) & y_2'(t) \end{vmatrix}$.

(a) The functions $y_1(t)$ and $y_2(t)$ are linearly independent over a < t < b if $W(y_1, y_2) \neq 0$ for at least one point in the interval.

(b) **THEOREM (Existence & Uniqueness)** If p(t), q(t) and q(t) are continuous in an open interval $\alpha < t < \beta$ containing t_0 , then the IVP $\begin{cases} y'' + p(t) y' + q(t) y = g(t) \\ y(t_0) = y_0 \\ y'(t_0) = u. \end{cases}$

has a unique solution $y = \phi(t)$ defined in the open interval $\alpha < t < \beta$.

- (c) Superposition Principle If $y_1(t)$ and $y_2(t)$ are solutions of the 2^{nd} order linear homogeneous equation P(t)y'' + Q(t)y' + R(t)y = 0 over the interval a < t < b, then $y = C_1 y_1(t) + C_2 y_2(t)$ is also a solution for any constants C_1 and C_2 .
- (d) **THEOREM (Homogeneous)** If $y_1(t)$ and $y_2(t)$ are solutions of the linear homogeneous equation P(t)y'' + Q(t)y' + R(t)y = 0 in some interval I and $W(y_1, y_2) \neq 0$ for some t_1 in I, then the general solution is $y_c(t) = C_1 y_1(t) + C_2 y_2(t)$. This is usually called the complementary solution and we say that $y_1(t), y_2(t)$ form a Fundamental Set of Solutions (FSS) to the differential equation.
- (e) THEOREM (Nonhomogeneous) The general solution of the nonhomogeneous equation

$$P(t)y'' + Q(t)y' + R(t)y = G(t)$$

is $y(t) = y_c(t) + y_p(t)$, where $y_c(t) = C_1 y_1(t) + C_2 y_2(t)$ is the general solution of the corresponding homogeneous equation P(t)y'' + Q(t)y' + R(t)y = 0 and $y_p(t)$ is a particular solution of the nonhomogeneous equation P(t)y'' + Q(t)y' + R(t)y = G(t).

(f) **<u>Useful Remark</u>**: If $y_{p_1}(t)$ is a particular solution of $P(t)y'' + Q(t)y' + R(t)y = G_1(t)$ and if $y_{p_2}(t)$ is a particular solution of $P(t)y'' + Q(t)y' + R(t)y = G_2(t)$, then

$$y_p(t) = y_{p_1}(t) + y_{p_2}(t)$$

is a particular solution of $P(t)y'' + Q(t)y' + R(t)y = [G_1(t) + G_2(t)]$.

(4) <u>Reduction of Order</u>. If $y_1(t)$ is one solution of P(t)y'' + Q(t)y' + R(t)y = 0, then a second solution may be obtained using the substitution $y = v(t) y_1(t)$. This reduces the original 2^{nd} order equation to a 1^{st} equation using the substitution $w = \frac{dv}{dt}$. Solve that first order equation for w, then since $w = \frac{dv}{dt}$, solve this 1^{st} order equation to determine the function v.

(5) Finding A Particular Solution $y_p(t)$ to Nonhomogeneous Equations.

You can always use the method of Variation of Parameters to find a particular solution $y_p(t)$ of the linear nonhomogeneous equation y'' + p(t) y' + q(t) y = g(t). Variation of Parameters may require integration techniques.

If the coefficients of the differential equation are <u>constants</u> rather than functions **and** if g(t) has a very special form (see table below), it is usually easier to use Undetermined Coefficients :

(a) <u>UNDETERMINED COEFFICIENTS</u> - IF	ay'' + by' + cy = g(t)	AND $g(t)$ is as below:
---	------------------------	--------------------------------

g(t)	Form of $\boldsymbol{y_p(t)}$	
$P_m(t) = a_m t^m + a_{m-1} t^{m-1} + \dots + a_0$	$t^{s} \{A_{m}t^{m} + A_{m-1}t^{m-1} + \dots + A_{0}\}$	
$e^{lpha t} P_m(t)$	$t^{s} \{ e^{\alpha t} (A_{m} t^{m} + A_{m-1} t^{m-1} + \dots + A_{0}) \}$	
$e^{lpha t} P_m(t) \cos eta t$ or $e^{lpha t} P_m(t) \sin eta t$	$t^{s} \{ e^{\alpha t} [F_{m}(t) \cos \beta t + G_{m}(t) \sin \beta t] \}$	

where s = the <u>smallest</u> nonnegative integer (s = 0, 1 or 2) such that no term of $y_p(t)$ is a solution of the corresponding homogeneous equation. In other words, no term of $y_p(t)$ is a term of $y_c(t)$. ($F_m(t), G_m(t)$ are both polynomials of degree m.)

(b) <u>VARIATION OF PARAMETERS</u> - If $y_1(t)$ and $y_2(t)$ are two independent solutions of the homogeneous equation y'' + p(t) y' + q(t) y = 0, then a particular solution $y_p(t)$ of the nonhomogeneous equation

$$y'' + p(t) y' + q(t) y = g(t) \quad (*)$$

has the form

$$y_p(t) = u_1(t) y_1(t) + u_2(t) y_2(t)$$

where

$$u_{1}' = \frac{\begin{vmatrix} 0 & y_{2} \\ g(t) & y_{2}' \end{vmatrix}}{\begin{vmatrix} y_{1} & y_{2} \\ y_{1}' & y_{2}' \end{vmatrix}}, \quad u_{2}' = \frac{\begin{vmatrix} y_{1} & 0 \\ y_{1}' & g(t) \end{vmatrix}}{\begin{vmatrix} y_{1} & y_{2} \\ y_{1}' & y_{2}' \end{vmatrix}}.$$

<u>Remember</u>: Coefficient of y'' in (*) <u>must</u> be "1" in order to use the above formulas.

(6) <u>Spring-Mass Systems</u> $\begin{cases} m u'' + \gamma u' + k u = F(t) \\ u(0) = u_0, u'(0) = u_1 \end{cases}$

 $m = \text{mass of object}, \quad \gamma = \text{damping constant}, \quad k = \text{spring constant}, \quad F(t) = \text{external force}$ Weight w = m g, <u>Hooke's Law</u>: $F_s = k d$,

- I Undamped Free Vibrations : m u'' + k u = 0 (Simple Harmonic Motion) Note that $A \cos \omega_0 t + B \sin \omega_0 t = R \cos(\omega_0 t - \delta)$, where $R = \sqrt{A^2 + B^2} = amplitude$, $\omega_0 = frequency, \frac{2\pi}{\omega_0} = period$ and $\delta = phase shift$ determined by $\tan \delta = \frac{B}{A}$.
- **II** Damped Free Vibrations : $m u'' + \gamma u' + k u = 0$
 - (i) $\gamma^2 4km > 0$ (overdamped) \iff distinct real roots to CE
 - (ii) $\gamma^2 4km = 0$ (*critically damped*) \iff repeated roots to CE
 - (iii) $\gamma^2 4km < 0$ (underdamped) \iff complex roots to CE (motion is oscillatory)

III <u>Forced Vibrations</u> : $(F(t) = F_0 \cos \omega t \text{ or } F(t) = F_0 \sin \omega t$, for example)

- (i) $\underline{m \, u'' + \gamma \, u' + k \, u = F(t)}_{u(t) = u_T(t) + u_\infty(t)}$ (Damped) In this case if you write the general solution as $\overline{u(t) = u_T(t) + u_\infty(t)}$, then $u_T(t) = Transient Solution$ (i.e. the part of u(t) such that $u_T(t) \longrightarrow 0$ as $t \longrightarrow \infty$) and $u_\infty(t) = Steady-State Solution$ (the solution behaves like this function in the long run).
- (ii) $\underline{m \, u'' + k \, u = F_0 \, \cos \omega t}$ (Undamped) If $\omega = \omega_0 = \sqrt{\frac{k}{m}} \Rightarrow \underline{\text{Resonance}}$ occurs and the solution is unbounded; while if $\omega \neq \omega_0$ then motion is a series of *beats* (solution is bounded)

(7) nth Order Linear Homogeneous Equations With Constant Coefficients

$$a_0 y^{(n)} + a_1 y^{(n-1)} + \dots + a_{n-1} y' + a_n y = 0$$
 (*)

This differential equation has n independent solutions.

Characteristic Equation: $a_0r^n + a_1r^{n-1} + \cdots + a_{n-1}r + a_n = 0$ will have \boldsymbol{n} characteristic roots that may be real and distinct, repeated, complex, or complex and repeated.

- (a) For each real root r that is not repeated \Rightarrow get a solution of (*): e^{rt}
- (b) For each real root r that is repeated \underline{m} times \Rightarrow get \underline{m} independent solutions of (*):

$$e^{rt}, te^{rt}, t^2 e^{rt}, \cdots, t^{m-1} e^{rt}$$

(c) For each complex root $r = \lambda + i\mu$ repeated \underline{m} times $\Rightarrow \text{get } \underline{2m}$ solutions of (*): $e^{\lambda t} \cos \mu t, \ te^{\lambda t} \cos \mu t, \ \cdots, \ t^{m-1}e^{\lambda t} \cos \mu t \quad \text{and} \quad e^{\lambda t} \sin \mu t, \ te^{\lambda t} \sin \mu t, \ \cdots, \ t^{m-1}e^{\lambda t} \sin \mu t$ (don't need to consider its conjugate root $\lambda - i\mu$)

(8) Undetermined Coefficients for n^{th} Order Linear Equations

This can only be used to find $y_p(t)$ of $a_0y^{(n)} + a_1y^{(n-1)} + \cdots + a_{n-1}y' + a_ny = g(t)$ and g(t) one of the 3 very SPECIAL FORMS in table in (5) above. The particular solution has the same form as before : $y_p(t) = t^s [\cdots]$, where s = the <u>smallest</u> nonnegative integer such that no term of $y_p(t)$ is a term of $y_c(t)$, except this time $s = 0, 1, 2, \ldots, n$.

(9) Laplace Transforms

(a) Be able to compute Laplace transforms using definition :

$$\mathcal{L}{f(t)} = F(s) = \int_0^\infty e^{-st} f(t) dt$$

and using a table of Laplace transforms (see table on page 317) and using linearity : $\mathcal{L}{f(t) + g(t)} = \mathcal{L}{f(t)} + \mathcal{L}{g(t)}$, $\mathcal{L}{cf(t)} = c\mathcal{L}{f(t)}$.

- (b) Computing Inverse Laplace Transforms: Must be able to use a table of Laplace transforms usually together with *Partial Fractions* or *Completing the Square*, to find inverse Laplace transforms: $f(t) = \mathcal{L}^{-1}{F(s)}$.
- (c) Solving Initial Value Problems: Recall that

$$\mathcal{L}\{y'\} = s \mathcal{L}\{y\} - y(0)$$

$$\mathcal{L}\{y''\} = s^2 \mathcal{L}\{y\} - s y(0) - y'(0)$$

$$\mathcal{L}\{y'''\} = s^3 \mathcal{L}\{y\} - s^2 y(0) - s y'(0) - y''(0)$$

$$\vdots$$

- (d) <u>Discontinuous Functions</u> :
 - (i) <u>Unit Step Function</u> (Heaviside Function) : If $c \ge 0$, $u_c(t) = \begin{cases} 0, t < c \\ 1, t \ge c \end{cases}$

PRACTICE PROBLEMS

[1] For what value of α will the solution to the IVP $\begin{cases} y'' - y' - 2y = 0\\ y(0) = \alpha \\ y'(0) = 2 \end{cases}$ satisfy $y \to 0$ as $t \to \infty$? [2] (a) Show that $y_1 = x$ and $y_2 = x^{-1}$ are colutions of the NG

[2] (a) Show that $y_1 = x$ and $y_2 = x^{-1}$ are solutions of the differential equation $x^2y'' + xy' - y = 0$. (b) Evaluate the Wronskian $W(y_2, y_1)$ at $x = \frac{1}{2}$.

(c) Find the solution of the initial value problem $x^2y'' + xy' - y = 0$, y(1) = 2, y'(1) = 4.

[3] Find the largest open interval for which the initial value problem

$$3x^2y'' + y' + \frac{1}{x-2}y = \frac{1}{x-3}, \ y(1) = 3, \ y'(1) = 2$$
, has a solution.

In Problems 4, 5, and 6 find the general solution of the homogeneous differential equations in (a) and use the method of **Undetermined Coefficients** to find a particular solution y_p in (b) and find the <u>FORM</u> of a particular solution (c).

[4] (a) y'' - 5y' + 6y = 0 (b) $y'' - 5y' + 6y = t^2$ (c) $y'' - 5y' + 6y = e^{2t} + \cos(3t)$

[5] (a)
$$y'' - 6y' + 9y = 0$$
 (b) $y'' - 6y' + 9y = te^{3t}$ (c) $y'' - 6y' + 9y = e^t + \cos(3t)$

[6] (a)
$$y'' - 2y' + 10y = 0$$
 (b) $y'' - 2y' + 10y = e^x + \cos(3x)$ (c) $y'' - 2y' + 10y = e^x \cos(3x)$

- [7] Find the general solution to (a) $y'' + y' 6y = 7e^{4t}$ (b) $y'' + y' 6y = 7e^{4t} 100 \sin t$
- [8] Solve this IVP: y'' y' = 4t, y(0) = 0, y'(0) = 0.
- [9] Find the general solution to $y'' + y = \tan t$, $0 < x < \frac{\pi}{2}$.

[10] The differential equation $x^2y'' - 2xy' + 2y = 0$ has solutions $y_1(x) = x$ and $y_2 = x^2$. Use the method of Variation of Parameters to find a solution of $x^2y'' - 2xy' + 2y = 2x^2$.

[11] The differential equation $x^2y'' + xy' - y = 0$ has one solution $y_1(x) = x$. Use the method of **Reduction of Order** to find a second (linearly independent) solution of $x^2y'' + xy' - y = 0$.

- [12] For what nonnegative values of γ will the the solution of the initial value problem
 - $u'' + \gamma u' + 4u = 0, \ u(0) = 4, \ u'(0) = 0 \ oscillate ?$
- [13] (a) For what positive values of k does the solution of the initial value problem $2u'' + ku = 3\cos(2t), \ u(0) = 0, \ u'(0) = 0, \ become \ unbounded \ (Resonance) ?$
 - (b) For what positive values of k does the solution of the initial value problem $2u'' + u' + ku = 3\cos(2t), \ u(0) = 0, \ u'(0) = 0, \ become \ unbounded \ (Resonance) ?$
- [14] Find the steady-state solution of the IVP $y'' + 4y' + 4y = \sin t$, y(0) = 0, y'(0) = 0.
- [15] A 4-kg mass stretches a spring 0.392 m. If the mass is released from 1 m below the equilibrium position with a downward velocity of 10 m/sec, what is the maximum displacement ?

In Problems 16 and 17 find the general solution of the homogeneous differential equations in (a) and use the method of **Undetermined Coefficients** to find the <u>FORM</u> of a particular solution of the nonhomogeneous equation in (b).

[16] (a) y''' - y' = 0 (b) $y''' - y' = t + e^t$ [17] (a) y''' - y'' - y' + y = 0 (b) $y''' - y'' - y' + y = e^t + \cos t$

[18] Find the solution of the initial value problem y'''-2y''+y'=0, y(0)=2, y'(0)=0, y''(0)=1.

- [19] Find the general solution of the differential equation $y''' + y' = t^2$.
- [20] Find the general solution of $y'' + 4y' = -10\cos 2t$.
- [21] Find a fundamental set of solutions of $y^{(5)} 4y''' = 0$.
- [22] Find the Laplace transform of these functions:

(a)
$$f(t) = 3 - e^{2t}$$
 (b) $g(t) = 100 t^5$ (c) $h(t) = \cosh \pi t$ (d) $k(t) = -10t^3 e^{5t}$
[23] Find the inverse Laplace transform of

(a)
$$F(s) = \frac{9}{s^2 - s - 2}$$
 (b) $F(s) = \frac{s}{(s - 1)^2}$ (c) $F(s) = \frac{8}{(s + 1)^4}$ (d) $F(s) = \frac{3s + 2}{s^2 + 2s + 5}$

[24] Solve these initial value problems: (a)
$$\begin{cases} y'' - y' - 6y = 0\\ y(0) = 1\\ y'(0) = -1 \end{cases}$$
 (b)
$$\begin{cases} y'' - 2y' + 2y = \cos t\\ y(0) = 1\\ y'(0) = 0 \end{cases}$$

(c)
$$y'' - y = \begin{cases} 1, & t < 5\\ 2, & 5 \le t < \infty \end{cases}$$
; $y(0) = y'(0) = 0.$

Answers

[1] $\alpha = -2$ **[2]** (b) $W(x^{-1}, x)(\frac{1}{2}) = 4$; (c) $y = 3x - x^{-1}$ **[3]** 0 < x < 2[4] (a) $y = C_1 e^{2t} + C_2 e^{3t}$ (b) $y = At^2 + Bt + C$ (c) $y = Ate^{2t} + B\cos(3t) + C\sin(3t)$ [5] (a) $y = C_1 e^{3t} + C_2 t e^{3t}$ (b) $y = t^2 (At + B)e^{3t}$ (c) $y = Ae^t + B\cos(3t) + C\sin(3t)$ [6] (a) $y = C_1 e^x \cos(3x) + C_2 e^x \sin(3x)$ (b) $y = Ae^x + B\cos(3x) + C\sin(3x)$ (c) $y = x(A\cos(3x) + B\sin(3x))e^x$ [7](a) $y = C_1 e^{-3t} + C_2 e^{2t} + \frac{1}{2} e^{4t}$ (b) $y = C_1 e^{-3t} + C_2 e^{2t} + \frac{1}{2} e^{4t} + 2\cos t + 14\sin t$ [8] $y = -4 + 4e^t - 2t^2 - 4t$ [9] $y = C_1 \cos t + C_2 \sin t - (\cos t) \ln(\sec t + \tan t)$ [10] $y = 2x^2 \ln x$ or $y = 2x^2 \ln x + (C_1 x + C_2 x^2)$ [11] $y = x^{-1}$ or $y = Ax^{-1} + Bx$, $A \neq 0$ $[12] \ 0 \le \gamma < 4$ **[13]** (a) k = 8 (resonance) (b) NO value of k, all solutions are bounded. [14] $y = \frac{1}{25}(3\sin t - 4\cos t)$ [15] $u(t) = \cos 5t + 2\sin 5t = \sqrt{5}\cos(5t - \delta), \ \delta = \tan^{-1} 2 \approx 1.1$ Thus amplitude $= \sqrt{5}$. **[16]** (a) $y = C_1 + C_2 e^{-t} + C_3 e^t$ (b) $y = t(At + B) + Cte^t$ [17] (a) $y = C_1 e^t + C_2 t e^t + C_3 e^{-t}$ (b) $y = At^2 e^t + B \cos t + C \sin t$ $[18] y = 3 - e^t + te^t$ [19] $y = C_1 + C_2 \cos t + C_3 \sin t + \frac{1}{2}t^3 - 2t$ [20] $y = C_1 + C_2 e^{-4t} + \left(\frac{1}{2}\cos 2t - \sin 2t\right)$ [20] $(a) \frac{2s-6}{s^2-2s}$ (b) $\frac{12000}{s^6}$ (c) $\frac{s}{s^2-\pi^2}$ (d) $-\frac{60}{(s-5)^4}$ [23] (a) $3(e^{2t} - e^{-t})$ (b) $e^t + te^t$ (c) $\frac{4}{3}t^3e^{-t}$ (d) $3e^{-t}\cos 2t - \frac{1}{2}e^{-t}\sin 2t$ [24] (a) $y = \frac{1}{5}(e^{3t} + 4e^{-2t})$ (b) $y = \frac{1}{5}(\cos t - 2\sin t + 4e^t\cos t - 2e^t\sin t)$ (c) $y = -1 + \frac{1}{2}(e^t + e^{-t}) + u_5(t)(-1 + \frac{1}{2}(e^{(t-5)} + e^{-(t-5)})),$ or $y = -1 + \cosh t + u_5(t)(-1 + \cosh(t-5))$ (d) $y = (-\frac{1}{8}\sin 2t + \frac{t}{4}) - u_1(t)(-\frac{1}{8}\sin 2(t-1) + \frac{t-1}{4}) - u_1(t)(\frac{1}{4} - \frac{1}{4}\cos 2(t-1))$ (e) $y = 3(1-e^{-t}) - 3u_2(t)(1-e^{-(t-2)}) + 3u_4(t)(1-e^{-(t-4)})$ (f) $y = \frac{1}{2}u_3(t)(t)\sin 2(t-3)$ [25] $\frac{100 s}{(s+2)(s^2+\pi^2)}$ [26] $\int_0^t (t-\tau) e^{3(t-\tau)} g(\tau) d\tau$ or $\int_0^t \tau e^{3\tau} g(t-\tau) d\tau$