
Spring 2012

MA 266

Review Topics - Exam # 2

(1) First Order Differential Equations. (Separable, 1st Order Linear, Homogeneous, Exact)

(2) Second Order Linear Homogeneous with Equations Constant Coefficients .

The differential equation ay′′ + by ′ + cy = 0 has Characteristic Equation ar2 + br + c = 0 .
Call the roots r1 and r2. The general solution of ay′′ + by′ + cy = 0 is as follows:

(a) If r1, r2 are real and distinct ⇒ y = C1 e
r1t + C2 e

r2t

(b) If r1 = λ+ iµ (hence r2 = λ− iµ) ⇒ y = C1 e
λt cosµt+ C2 e

λt sinµt

(c) If r1 = r2 (repeated roots) ⇒ y = C1 e
r1t + C2 te

r1t

(3) Theory of 2nd Linear Order Equations.

Wronskian of y1, y2 is W (y1, y2)(t) =

∣∣∣∣∣∣∣
y1(t) y2(t)

y′1(t) y′2(t)

∣∣∣∣∣∣∣ .
(a) The functions y1(t) and y2(t) are linearly independent over a < t < b if W (y1, y2) ̸= 0

for at least one point in the interval.

(b) THEOREM (Existence & Uniqueness) If p(t), q(t) and g(t) are continuous in an

open interval α < t < β containing t0, then the IVP


y′′ + p(t) y′ + q(t) y = g(t)
y(t0) = y0
y′(t0) = y1

has a unique solution y = ϕ(t) defined in the open interval α < t < β.

(c) Superposition Principle If y1(t) and y2(t) are solutions of the 2nd order linear ho-
mogeneous equation P (t)y′′ + Q(t)y′ + R(t)y = 0 over the interval a < t < b, then
y = C1 y1(t) + C2 y2(t) is also a solution for any constants C1 and C2.

(d) THEOREM (Homogeneous) If y1(t) and y2(t) are solutions of the linear homoge-
neous equation P (t)y′′ +Q(t)y′ + R(t)y = 0 in some interval I and W (y1, y2) ̸= 0 for
some t1 in I, then the general solution is yc(t) = C1 y1(t) + C2 y2(t). This is usually
called the complementary solution and we say that y1(t), y2(t) form a Fundamental Set
of Solutions (FSS) to the differential equation.

(e) THEOREM (Nonhomogeneous) The general solution of the nonhomogeneous equa-
tion

P (t)y′′ +Q(t)y′ +R(t)y = G(t)

is y(t) = yc(t) + yp(t), where yc(t) = C1 y1(t) + C2 y2(t) is the general solution of the
corresponding homogeneous equation P (t)y′′+Q(t)y′+R(t)y = 0 and yp(t) is a particular
solution of the nonhomogeneous equation P (t)y′′ +Q(t)y′ +R(t)y = G(t).

(f) Useful Remark : If yp1(t) is a particular solution of P (t)y′′ + Q(t)y′ + R(t)y = G1(t)
and if yp2(t) is a particular solution of P (t)y′′ +Q(t)y′ +R(t)y = G2(t), then

yp(t) = yp1(t) + yp2(t)

is a particular solution of P (t)y′′ +Q(t)y′ +R(t)y = [G1(t) +G2(t)] .



(4) Reduction of Order. If y1(t) is one solution of P (t)y′′ +Q(t)y′ +R(t)y = 0, then a second

solution may be obtained using the substitution y = v(t) y1(t) . This reduces the original

2nd order equation to a 1st equation using the substitution w =
dv

dt
. Solve that first order

equation for w, then since w =
dv

dt
, solve this 1st order equation to determine the function v.

(5) Finding A Particular Solution yp(t) to Nonhomogeneous Equations.

You can always use the method of Variation of Parameters to find a particular solution yp(t)
of the linear nonhomogeneous equation y′′ + p(t) y ′ + q(t) y = g(t) . Variation of Parameters
may require integration techniques.

If the coefficients of the differential equation are constants rather than functions and if g(t)
has a very special form (see table below), it is usually easier to use Undetermined Coefficients
:

(a) Undetermined Coefficients - IF ay′′ + by ′ + cy = g(t) AND g(t) is as below:

g(t) Form of yp(t)

Pm(t) = amt
m + am−1t

m−1 + · · ·+ a0 ts {Amt
m + Am−1t

m−1 + · · ·+ A0}

eαt Pm(t) ts {eαt (Amt
m + Am−1t

m−1 + · · ·+ A0)}

eαt Pm(t) cos βt or eαt Pm(t) sin βt ts {eαt [Fm(t) cos βt+ Gm(t) sin βt]}

where s = the smallest nonnegative integer (s = 0, 1 or 2) such that no term of yp(t) is
a solution of the corresponding homogeneous equation. In other words, no term of yp(t)
is a term of yc(t). (Fm(t), Gm(t) are both polynomials of degree m.)

(b) Variation of Parameters - If y1(t) and y2(t) are two independent solutions of the
homogeneous equation y′′ + p(t) y ′ + q(t) y = 0, then a particular solution yp(t) of the
nonhomogeneous equation

y′′ + p(t) y ′ + q(t) y = g(t) (∗)

has the form

yp(t) = u1(t) y1(t) + u2(t) y2(t)

where

u ′
1 =

∣∣∣∣∣ 0 y2
g(t) y′2

∣∣∣∣∣∣∣∣∣∣ y1 y2
y′1 y′2

∣∣∣∣∣
, u ′

2 =

∣∣∣∣∣ y1 0
y′1 g(t)

∣∣∣∣∣∣∣∣∣∣ y1 y2
y′1 y′2

∣∣∣∣∣
.

Remember: Coefficient of y′′ in (∗) must be “1” in order to use the above formulas.



(6) Spring-Mass Systems

{
mu′′ + γ u′ + k u = F (t)
u(0) = u0 , u′(0) = u1

m = mass of object, γ = damping constant, k = spring constant, F (t) = external force
Weight w = mg, Hooke’s Law : Fs = k d ,
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F = Fs g
kd=mg

equilibrium:

L0 L0

I Undamped Free Vibrations : mu′′ + k u = 0 (Simple Harmonic Motion)

Note that A cosω0t+B sinω0t = R cos(ω0t− δ), where R =
√
A2 +B2 = amplitude,

ω0 = frequency,
2π

ω0

= period and δ = phase shift determined by tan δ =
B

A
.

II Damped Free Vibrations : mu′′ + γ u′ + k u = 0

(i) γ2 − 4km > 0 (overdamped ) ⇐⇒ distinct real roots to CE

(ii) γ2 − 4km = 0 (critically damped ) ⇐⇒ repeated roots to CE

(iii) γ2 − 4km < 0 (underdamped ) ⇐⇒ complex roots to CE (motion is oscillatory)

III Forced Vibrations : (F (t) = F0 cosωt or F (t) = F0 sinωt, for example)

(i) mu′′ + γ u′ + k u = F (t) (Damped) In this case if you write the general solution as
u(t) = uT (t)+u∞(t), then uT (t) = Transient Solution (i.e. the part of u(t) such that
uT (t) −→ 0 as t −→ ∞) and u∞(t) = Steady-State Solution (the solution behaves
like this function in the long run).

(ii) mu′′ + k u = F0 cosωt (Undamped) If ω = ω0 =

√
k

m
⇒ Resonance occurs and

the solution is unbounded; while if ω ̸= ω0 then motion is a series of beats (solution
is bounded)

(7) nth Order Linear Homogeneous Equations With Constant Coefficients

a0y
(n) + a1y

(n−1) + · · ·+ an−1y
′ + any = 0 (∗)

This differential equation has n independent solutions.

Characteristic Equation : a0r
n + a1r

n−1 + · · · + an−1r + an = 0 will have n characteristic
roots that may be real and distinct, repeated, complex, or complex and repeated.



(a) For each real root r that is not repeated ⇒ get a solution of (∗): ert

(b) For each real root r that is repeated m times ⇒ get m independent solutions of (∗):

ert, tert, t2ert, · · · , tm−1ert

(c) For each complex root r = λ+ iµ repeated m times ⇒ get 2m solutions of (∗):
eλt cosµt, teλt cosµt, · · · , tm−1eλt cosµt and eλt sinµt, teλt sinµt, · · · , tm−1eλt sinµt

(don’t need to consider its conjugate root λ− iµ)

(8) Undetermined Coefficients for nth Order Linear Equations

This can only be used to find yp(t) of a0y
(n) + a1y

(n−1) + · · · + an−1y
′ + any = g(t) and g(t)

one of the 3 very SPECIAL FORMS in table in (5) above. The particular solution has the
same form as before : yp(t) = t s [· · ·] , where s = the smallest nonnegative integer such that
no term of yp(t) is a term of yc(t), except this time s = 0, 1, 2, . . . , n .

(9) Laplace Transforms

(a) Be able to compute Laplace transforms using definition :

L{f(t)} = F (s) =
∫ ∞

0
e −st f(t) dt

and using a table of Laplace transforms (see table on page 317) and using linearity :
L{f(t) + g(t)} = L{f(t)}+ L{g(t)} , L{c f(t)} = cL{f(t)} .

(b) Computing Inverse Laplace Transforms: Must be able to use a table of Laplace trans-
forms usually together with Partial Fractions or Completing the Square, to find inverse
Laplace transforms: f(t) = L−1{F (s)} .

(c) Solving Initial Value Problems: Recall that

L{y ′} = sL{y} − y(0)

L{y ′′} = s2 L{y} − s y(0)− y ′(0)

L{y ′′′} = s3 L{y} − s2 y(0)− s y ′(0)− y′′(0)
...

(d) Discontinuous Functions :

(i) Unit Step Function (Heaviside Function) : If c ≥ 0 , uc(t) =

{
0 , t < c
1 , t ≥ c

y

t
c0

1

y = u (t)c

L{uc(t)} =
e −c s

s



(ii) Unit “Pulse” Function : ua(t)− ub(t) =

{
1, a ≤ t < b
0, otherwise

t

y

1

a b0

y = u (t)−u (t)a b

(iii) Translated Functions : y = g(t) =

{
0 , t < c

f(t− c) , t ≥ c
= uc(t) f(t− c) .

y y
y=f(t) y=g(t)

0 0 c
t t

f(0) f(0)

L{uc(t) f(t−c)} = e −c s F (s) ,where F (s) = L{f(t)}

Thus, L −1{e −c s F (s)} = uc(t) f(t− c) , where f(t) = L −1{F (s)}

A useful formula NOT in the book : L{uc(t)h(t)} = e −c s L{h(t + c)}

(iv) Unit Impulse Functions : If y = δ(t−c) ( c ≥ 0) , then L{δ(t− c)} = e−cs

(e) Convolutions: L{(f ∗ g)(t)} = L
{∫ t

0
f(t− τ) g(τ) dτ

}
= L{f(t)} L{g(t)}

Practice Problems

[1] For what value of α will the solution to the IVP


y′′ − y′ − 2y = 0
y(0) = α
y′(0) = 2

satisfy y → 0 as t → ∞ ?

[2] (a) Show that y1 = x and y2 = x−1 are solutions of the differential equation x2y′′ + xy′ − y = 0.
(b) Evaluate the Wronskian W (y2, y1) at x = 1

2
.

(c) Find the solution of the initial value problem x2y′′ + xy′ − y = 0, y(1) = 2, y′(1) = 4.



[3] Find the largest open interval for which the initial value problem

3x2y′′ + y ′ +
1

x− 2
y =

1

x− 3
, y(1) = 3, y′(1) = 2, has a solution.

In Problems 4, 5, and 6 find the general solution of the homogeneous differential equations in (a)
and use the method of Undetermined Coefficients to find a particular solution yp in (b) and
find the form of a particular solution (c).
[4] (a) y′′ − 5y′ + 6y = 0 (b) y′′ − 5y′ + 6y = t2 (c) y′′ − 5y′ + 6y = e2t + cos(3t)

[5] (a) y′′ − 6y′ + 9y = 0 (b) y′′ − 6y′ + 9y = te3t (c) y′′ − 6y′ + 9y = et + cos(3t)

[6] (a) y′′ − 2y′ + 10y = 0 (b) y′′ − 2y′ + 10y = ex + cos(3x) (c) y′′ − 2y′ + 10y = ex cos(3x)

[7] Find the general solution to (a) y′′ + y′ − 6y = 7e4t (b) y′′ + y′ − 6y = 7e4t − 100 sin t

[8] Solve this IVP: y′′ − y′ = 4t, y(0) = 0, y′(0) = 0.

[9] Find the general solution to y′′ + y = tan t , 0 < x < π
2
.

[10] The differential equation x2y′′ − 2xy′ + 2y = 0 has solutions y1(x) = x and y2 = x2. Use the
method of Variation of Parameters to find a solution of x2y′′ − 2xy′ + 2y = 2x2.

[11] The differential equation x2y′′ + xy′ − y = 0 has one solution y1(x) = x. Use the method of
Reduction of Order to find a second (linearly independent) solution of x2y′′ + xy′ − y = 0.
[12] For what nonnegative values of γ will the the solution of the initial value problem

u′′ + γu′ + 4u = 0, u(0) = 4, u′(0) = 0 oscillate ?

[13] (a) For what positive values of k does the solution of the initial value problem
2u′′ + ku = 3 cos(2t), u(0) = 0, u′(0) = 0, become unbounded (Resonance) ?

(b) For what positive values of k does the solution of the initial value problem
2u′′ + u′ + ku = 3 cos(2t), u(0) = 0, u′(0) = 0, become unbounded (Resonance) ?

[14] Find the steady–state solution of the IVP y′′ + 4y′ + 4y = sin t, y(0) = 0, y′(0) = 0.

[15] A 4-kg mass stretches a spring 0.392 m. If the mass is released from 1 m below the equilibrium

position with a downward velocity of 10 m/sec, what is the maximum displacement ?

In Problems 16 and 17 find the general solution of the homogeneous differential equations in (a)
and use the method of Undetermined Coefficients to find the form of a particular solution of
the nonhomogeneous equation in (b).
[16] (a) y′′′ − y′ = 0 (b) y′′′ − y′ = t+ et

[17] (a) y′′′ − y′′ − y′ + y = 0 (b) y′′′ − y′′ − y′ + y = et + cos t

[18] Find the solution of the initial value problem y′′′−2y′′+y′ = 0, y(0) = 2, y′(0) = 0, y′′(0) = 1.

[19] Find the general solution of the differential equation y′′′ + y′ = t2.

[20] Find the general solution of y′′ + 4y ′ = −10 cos 2t.

[21] Find a fundamental set of solutions of y(5) − 4y′′′ = 0 .

[22] Find the Laplace transform of these functions:

(a) f(t) = 3− e2t (b) g(t) = 100 t5 (c) h(t) = cosh πt (d) k(t) = −10t3e5t

[23] Find the inverse Laplace transform of

(a) F (s) =
9

s2 − s− 2
(b) F (s) =

s

(s− 1)2
(c) F (s) =

8

(s+ 1)4
(d) F (s) =

3s+ 2

s2 + 2s+ 5

[24] Solve these initial value problems: (a)


y′′ − y ′ − 6y = 0
y(0) = 1
y′(0) = −1

(b)


y′′ − 2y′ + 2y = cos t
y(0) = 1
y ′(0) = 0

(c) y′′ − y =

{
1 , t < 5
2 , 5 ≤ t < ∞ ; y(0) = y′(0) = 0.



(d) y′′ + 4y =

{
t , t < 1
0 , 1 < t < ∞ ; y(0) = y′(0) = 0.

(e) y ′ + y = g(t) , y(0) = 0 and where g(t) :
y

20

t
4

y = g (t)

3

(f) y′′ + 4y = δ(t− 3) , y(0) = y ′(0) = 0

[25] L
{∫ t

0
100 e−2τ cosπ(t− τ) dτ

}
= ?

[26] If g(t) = L−1{G(s)}, then L−1

{
G(s)

(s− 3)2

}
= ?

Answers

[1] α = −2 [2] (b) W (x−1, x)(1
2
) = 4 ; (c) y = 3x− x−1 [3] 0 < x < 2

[4] (a) y = C1e
2t + C2e

3t (b) y = At2 +Bt+ C (c) y = Ate2t +B cos(3t) + C sin(3t)
[5] (a) y = C1e

3t + C2te
3t (b) y = t2(At+B)e3t (c) y = Aet +B cos(3t) + C sin(3t)

[6] (a) y = C1e
x cos(3x) + C2e

x sin(3x) (b) y = Aex +B cos(3x) + C sin(3x)
(c) y = x(A cos(3x) +B sin(3x))ex

[7](a) y = C1e
−3t + C2e

2t + 1
2
e4t (b) y = C1e

−3t + C2e
2t + 1

2
e4t + 2 cos t+ 14 sin t

[8] y = −4 + 4et − 2t2 − 4t
[9] y = C1 cos t+ C2 sin t− (cos t) ln(sec t+ tan t)
[10] y = 2x2 lnx or y = 2x2 lnx+ (C1x+ C2x

2)
[11] y = x−1 or y = Ax−1 +Bx, A ̸= 0
[12] 0 ≤ γ < 4
[13] (a) k = 8 (resonance) (b) NO value of k, all solutions are bounded.

[14] y = 1
25
(3 sin t− 4 cos t)

[15] u(t) = cos 5t+ 2 sin 5t =
√
5 cos (5t− δ), δ = tan−1 2 ≈ 1.1 Thus amplitude =

√
5.

[16] (a) y = C1 + C2e
−t + C3e

t (b) y = t(At+B) + Ctet

[17] (a) y = C1e
t + C2te

t + C3e
−t (b) y = At2et +B cos t+ C sin t

[18] y = 3− et + tet

[19] y = C1 + C2 cos t+ C3 sin t+
1

3
t3 − 2t

[20] y = C1 + C2e
−4t +

(
1
2
cos 2t− sin 2t

)
[21] {1, t, t2, e2t, e−2t}
[22] (a)

2s− 6

s2 − 2s
(b)

12000

s6
(c)

s

s2 − π2
(d) − 60

(s− 5)4

[23] (a) 3(e2t − e−t) (b) et + tet (c) 4
3
t3e−t (d) 3e−t cos 2t− 1

2
e−t sin 2t

[24] (a) y = 1
5
(e3t + 4e−2t) (b) y = 1

5
(cos t− 2 sin t+ 4et cos t− 2et sin t)

(c) y = −1 + 1
2
(et + e−t) + u5(t)(−1 + 1

2
(e(t−5) + e−(t−5))),

or y = −1 + cosh t+ u5(t)(−1 + cosh(t− 5))
(d) y = (−1

8
sin 2t+ t

4
)− u1(t)(−1

8
sin 2(t− 1) + t−1

4
)− u1(t)(

1
4
− 1

4
cos 2(t− 1))

(e) y = 3 (1− e−t)− 3u2(t)(1− e−(t−2)) + 3u4(t)(1− e−(t−4)) (f) y = 1
2
u3(t)(t) sin 2(t− 3)

[25]
100 s

(s+ 2)(s2 + π2)
[26]

∫ t

0
(t− τ) e3(t−τ)g(τ) dτ or

∫ t

0
τ e3τg(t− τ) dτ


