MA 271 PRACTICE PROBLEMS

1. If the line ℓ is parallel to the vector $\vec{v}=2 \vec{i}-3 \vec{j}+7 \vec{k}$, and contains the point $(2,1,-3)$, then its vector equation is
A. $\vec{r}=(1+2 t) \vec{i}-3 t \vec{j}+(-2+7 t) \vec{k}$
B. $\vec{r}=(2+t) \vec{i}-3 \vec{j}+(7-2 t) \vec{k}$
C. $\vec{r}=(2+2 t) \vec{i}+(1-3 t) \vec{j}+(-3+7 t) \vec{k}$
D. $\vec{r}=(2+2 t) \vec{i}+(-3+t) \vec{j}+(7-3 t) \vec{k}$
E. $\vec{r}=(2+t) \vec{i}+\vec{j}+(7-3 t) \vec{k}$
2. Find parametric equations of the line containing the points $(1,-1,0)$ and $(-2,3,5)$.
A. $x=1-3 t, y=-1+4 t, z=5 t$
B. $x=t, y=-t, z=0$
C. $x=1-2 t, y=-1+3 t, z=5 t$
D. $x=-2 t, y=3 t, z=5 t$
E. $x=-1+t, y=2-t, z=5$
3. Find an equation of the plane that contains the point $(1,-1,-1)$ and has normal vector $\frac{1}{2} \vec{i}+2 \vec{j}+3 \vec{k}$.
A. $x-y-z+\frac{9}{2}=0$
B. $x+4 y+6 z+9=0$
C. $\frac{x-1}{\frac{1}{2}}=\frac{y+1}{2}=\frac{z+1}{3}$
D. $x-y-z=0$
E. $\frac{1}{2} x+2 y+3 z=1$
4. Find an equation of the plane that contains the points $(1,0,-1),(-5,3,2)$, and $(2,-1,4)$.
A. $6 x-11 y+z=5$
B. $6 x+11 y+z=5$
C. $11 x-6 y+z=0$
D. $\vec{r}=18 \vec{i}-33 \vec{j}+3 \vec{k}$
E. $x-6 y-11 z=12$
5. Find parametric equations of the line tangent to the curve $\vec{r}(t)=t \vec{i}+t^{2} \vec{j}+t^{3} \vec{k}$ at the point $(2,4,8)$
A. $x=2+t, y=4+4 t, z=8+12 t$
B. $x=1+2 t, y=4+4 t, z=12+8 t$
C. $x=2 t, y=4 t, z=8 t$
D. $x=t, y=4 t, z=12 t$
E. $x=2+t, y=4+2 t, z=8+3 t$
6. The position function of an object is

$$
\vec{r}(t)=\cos t \vec{i}+3 \sin t \vec{j}-t^{2} \vec{k}
$$

Find the velocity, acceleration, and speed of the object when $t=\pi$.

	Velocity	Acceleration	Speed
A.	$-\vec{i}-\pi^{2} \vec{k}$	$-3 \vec{j}-2 \pi \vec{k}$	$\sqrt{1+\pi^{4}}$
B.	$\vec{i}-3 \vec{j}+2 \pi \vec{k}$	$-\vec{i}-2 \vec{k}$	$\sqrt{10+4 \pi^{2}}$
C.	$3 \vec{j}-2 \pi \vec{k}$	$-\vec{i}-2 \vec{k}$	$\sqrt{9+4 \pi^{2}}$
D.	$-3 \vec{j}-2 \pi \vec{k}$	$\vec{i}-2 \vec{k}$	$\sqrt{9+4 \pi^{2}}$
E.	$\vec{i}-2 \vec{k}$	$-3 \vec{j}-2 \pi \vec{k}$	$\sqrt{5}$

7. A smooth parametrization of the semicircle which passes through the points $(1,0,5),(0,1,5)$ and $(-1,0,5)$ is
A. $\vec{r}(t)=\sin t \vec{i}+\cos t \vec{j}+5 \vec{k}, 0 \leq t \leq \pi$
B. $\vec{r}(t)=\cos t \vec{i}+\sin t \vec{j}+5 \vec{k}, 0 \leq t \leq \pi$
C. $\vec{r}(t)=\cos t \vec{i}+\sin t \vec{j}+5 \vec{k}, \frac{\pi}{2} \leq t \leq \frac{3 \pi}{2}$
D. $\vec{r}(t)=\cos t \vec{i}+\sin t \vec{j}+5 \vec{k}, 0 \leq t \leq \frac{\pi}{2}$
E. $\vec{r}(t)=\sin t+\cos t \vec{j}+5 \vec{k}, \frac{\pi}{2} \leq t \leq \frac{3 \pi}{2}$
8. The length of the curve $\vec{r}(t)=\frac{2}{3}(1+t)^{\frac{3}{2}} \vec{i}+\frac{2}{3}(1-t)^{\frac{3}{2}} \vec{j}+t \vec{k},-1 \leq t \leq 1$ is
A. $\sqrt{3}$
B. $\sqrt{2}$
C. $\frac{1}{2} \sqrt{3}$
D. $2 \sqrt{3}$
E. $\sqrt{2}$
9. The level curves of the function $f(x, y)=\sqrt{1-x^{2}-2 y^{2}}$ are
A. circles
B. lines
C. parabolas
D. hyperbolas
E. ellipses
10. The level surface of the function $f(x, y, z)=z-x^{2}-y^{2}$ that passes through the point $(1,2,-3)$ intersects the (x, z)-plane $(y=0)$ along the curve
A. $z=x^{2}+8$
B. $z=x^{2}-8$
C. $z=x^{2}+5$
D. $z=-x^{2}-8$
E. does not intersect the (x, z)-plane
11. Match the graphs of the equations with their names:
(1) $x^{2}+y^{2}+z^{2}=4$
(a) paraboloid
(2) $x^{2}+z^{2}=4$
(b) sphere
(3) $x^{2}+y^{2}=z^{2}$
(c) cylinder
(4) $x^{2}+y^{2}=z$
(d) double cone
(5) $x^{2}+2 y^{2}+3 z^{2}=1$
(e) ellipsoid
A. $1 \mathrm{~b}, 2 \mathrm{c}, 3 \mathrm{~d}, 4 \mathrm{a}, 5 \mathrm{e}$
B. $1 \mathrm{~b}, 2 \mathrm{c}, 3 \mathrm{a}, 4 \mathrm{~d}, 5 \mathrm{e}$
C. $1 \mathrm{e}, 2 \mathrm{c}, 3 \mathrm{~d}, 4 \mathrm{a}, 5 \mathrm{~b}$
D. $1 \mathrm{~b}, 2 \mathrm{~d}, 3 \mathrm{a}, 4 \mathrm{c}, 5 \mathrm{e}$
E. $1 \mathrm{~d}, 2 \mathrm{a}, 3 \mathrm{~b}, 4 \mathrm{e}, 5 \mathrm{c}$
12. Suppose that $w=u^{2} / v$ where $u=g_{1}(t)$ and $v=g_{2}(t)$ are differentiable functions of t. If $g_{1}(1)=3$, $g_{2}(1)=2, g_{1}^{\prime}(1)=5$ and $g_{2}^{\prime}(1)=-4$, find $\frac{d w}{d t}$ when $t=1$.
A. 6
B. $33 / 2$
C. -24
D. 33
E. 24
13. If $w=e^{u v}$ and $u=r+s, v=r s$, find $\frac{\partial w}{\partial r}$.
A. $e^{(r+s) r s}\left(2 r s+r^{2}\right)$
B. $e^{(r+s) r s}\left(2 r s+s^{2}\right)$
C. $e^{(r+s) r s}\left(2 r s+r^{2}\right)$
D. $e^{(r+s) r s}(1+s)$
E. $e^{(r+s) r s}\left(r+s^{2}\right)$.
14. If $f(x, y)=\cos (x y), \frac{\partial^{2} f}{\partial x \partial y}=$
A. $-x y \cos (x y)$
B. $-x y \cos (x y)-\sin (x y)$
C. $-\sin (x y)$
D. $x y \cos (x y)+\sin (x y)$
E. $-\cos (x y)$
15. Assuming that the equation $x y^{2}+3 z=\cos \left(z^{2}\right)$ defines z implicitly as a function of x and y, find $\frac{\partial z}{\partial x}$.
A. $\frac{y^{2}}{3-\sin \left(z^{2}\right)}$
B. $\frac{-y^{2}}{3+\sin \left(z^{2}\right)}$
C. $\frac{y^{2}}{3+2 z \sin \left(z^{2}\right)}$
D. $\frac{-y^{2}}{3+2 z \sin \left(z^{2}\right)}$
E. $\frac{-y^{2}}{3-2 z \sin \left(z^{2}\right)}$
16. If $f(x, y)=x y^{2}$, then $\nabla f(2,3)=$
A. $12 \vec{i}+9 \vec{j}$
B. $18 \vec{i}+18 \vec{j}$
C. $9 \vec{i}+12 \vec{j}$
D. 21
E. $\sqrt{2}$.
17. Find the directional derivative of $f(x, y)=5-4 x^{2}-3 y$ at (x, y) towards the origin
A. $-8 x-3$
B. $\frac{-8 x^{2}-3 y}{\sqrt{x^{2}+y^{2}}}$
C. $\frac{-8 x-3}{\sqrt{64 x^{2}+9}}$
D. $8 x^{2}+3 y$
E. $\frac{8 x^{2}+3 y}{\sqrt{x^{2}+y^{2}}}$.
18. For the function $f(x, y)=x^{2} y$, find a unit vector \vec{u} for which the directional derivative $D_{\vec{u}} f(2,3)$ is zero.
A. $\vec{i}+3 \vec{j}$
B. $\frac{i+3 \vec{j}}{\sqrt{10}}$
C. $\vec{i}-3 \vec{j}$
D. $\frac{i-3 \vec{j}}{\sqrt{10}}$
E. $\frac{3 \vec{i}-\vec{j}}{\sqrt{10}}$.
19. Find a vector pointing in the direction in which $f(x, y, z)=3 x y-9 x z^{2}+y$ increases most rapidly at the point $(1,1,0)$.
A. $3 \vec{i}+4 \vec{j}$
B. $\vec{i}+\vec{j}$
C. $4 \vec{i}-3 \vec{j}$
D. $2 \vec{i}+\vec{k}$
E. $-\vec{i}+\vec{j}$.
20. Find a vector that is normal to the graph of the equation $2 \cos (\pi x y)=1$ at the point $\left(\frac{1}{6}, 2\right)$.
A. $6 \vec{i}+\vec{j}$
B. $-\sqrt{3} \vec{i}-\vec{j}$
C. $12 \vec{i}+\vec{j}$
D. \vec{j}
E. $12 \vec{i}-\vec{j}$.
21. Find an equation of the tangent plane to the surface $x^{2}+2 y^{2}+3 z^{2}=6$ at the point $(1,1,-1)$.
A. $-x+2 y+3 z=2$
B. $2 x+4 y-6 z=6$
C. $x-2 y+3 z=-4$
D. $2 x+4 y-6 z=0$
E. $x+2 y-3 z=6$.
22. Find an equation of the plane tangent to the graph of $f(x, y)=\pi+\sin \left(\pi x^{2}+2 y\right)$ when $(x, y)=(2, \pi)$.
A. $4 \pi x+2 y-z=9 \pi$
B. $4 x+2 \pi y-z=10 \pi$
C. $4 \pi x+2 \pi y+z=10 \pi$
D. $4 x+2 \pi y-z=9 \pi$
E. $4 \pi x+2 y+z=9 \pi$.
23. Let $f(x, y, z)=\frac{x^{2} y^{4}}{x^{4}+6 y^{8}}$ when $x \neq 0$ and $f(0,0)=0$. Which of the following are (is) true?
i) $\partial f / \partial x(0,0)$ and $\partial f / \partial y(0,0)$ exist at $(0,0)$.
ii) $f(x, y)$ is continuous at $(0,0)$.
iii) The graph of $z=f(x, y)$ has a tangent plane at $(0,0,0)$.
A. i) only
B. i) and ii) only
C. i) and iii) only
D. i) ii), and iii)
E. None
24. The function $f(x, y)=2 x^{3}-6 x y-3 y^{2}$ has
A. a relative minimum and a saddle point
B. a relative maximum and a saddle point
C. a relative minimum and a relative maximum
D. two saddle points
E. two relative minima.
25. Consider the problem of finding the minimum value of the function $f(x, y)=4 x^{2}+y^{2}$ on the curve $x y=1$. In using the method of Lagrange multipliers, the value of λ (even though it is not needed) will be
A. 2
B. -2
C. $\sqrt{2}$
D. $\frac{1}{\sqrt{2}}$
E. 4.
26. Evaluate the iterated integral $\int_{1}^{3} \int_{0}^{x} \frac{1}{x} d y d x$.
A. $-\frac{8}{9}$
B. 2
C. $\ln 3$
D. 0
E. $\ln 2$.
27. Consider the double integral, $\iint_{R} f(x, y) d A$, where R is the portion of the disk $x^{2}+y^{2} \leq 1$, in the upper half-plane, $y \geq 0$. Express the integral as an iterated integral.
A. $\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} f(x, y) d y d x$
B. $\int_{-1}^{0} \int_{0}^{\sqrt{1-x^{2}}} f(x, y) d y d x$
C. $\int_{-1}^{1} \int_{0}^{\sqrt{1-x^{2}}} f(x, y) d y d x$
D. $\int_{0}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} f(x, y) d y d x$
E. $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} f(x, y) d y d x$.
28. Find a and b for the correct interchange of order of integration:

$$
\int_{0}^{2} \int_{x^{2}}^{2 x} f(x, y) d y d x=\int_{0}^{4} \int_{a}^{b} f(x, y) d x d y
$$

A. $a=y^{2}, b=2 y$
B. $a=\frac{y}{2}, b=\sqrt{y}$
C. $a=\frac{y}{2}, b=y$
D. $a=\sqrt{y}, b=\frac{y}{2}$
E. cannot be done without explicit knowledge of $f(x, y)$.
29. Evaluate the double integral $\iint_{R} y d A$, where R is the region of the (x, y)-plane inside the triangle with vertices $(0,0),(2,0)$ and $(2,1)$.
A. 2
B. $\frac{8}{3}$
C. $\frac{2}{3}$
D. 1
E. $\frac{1}{3}$.
30. The volume of the solid region in the first octant bounded above by the parabolic sheet $z=1-x^{2}$, below by the $x y$ plane, and on the sides by the planes $y=0$ and $y=x$ is given by the double integral
A. $\int_{0}^{1} \int_{0}^{x}\left(1-x^{2}\right) d y d x$
B. $\int_{0}^{1} \int_{0}^{1-x^{2}} x d y d x$
C. $\int_{-1}^{1} \int_{-x}^{x}\left(1-x^{2}\right) d y d x$
D. $\int_{0}^{1} \int_{x}^{0}\left(1-x^{2}\right) d y d x$
E. $\int_{0}^{1} \int_{x}^{1-x^{2}} d y d x$.
31. The area of one leaf of the three-leaved rose bounded by the graph of $r=5 \sin 3 \theta$ is
A. $\frac{5 \pi}{6}$
B. $\frac{25 \pi}{12}$
C. $\frac{25 \pi}{6}$
D. $\frac{5 \pi}{3}$
E. $\frac{25 \pi}{3}$.
32. Find the area of the portion of the plane $x+3 y+2 z=6$ that lies in the first octant.
A. $3 \sqrt{11}$
B. $6 \sqrt{7}$
C. $6 \sqrt{14}$
D. $3 \sqrt{14}$
E. $6 \sqrt{11}$.
33. A solid region in the first octant is bounded by the surfaces $z=y^{2}, y=x, y=0, z=0$ and $x=4$. The volume of the region is
A. 64
B. $\frac{64}{3}$
C. $\frac{32}{3}$
D. 32
E. $\frac{16}{3}$.
34. An object occupies the region bounded above by the sphere $x^{2}+y^{2}+z^{2}=32$ and below by the cone $z=\sqrt{x^{2}+y^{2}}$. The mass density at any point of the object is equal to its distance from the $x y$ plane. Set up a triple integral in rectangular coordinates for the total mass m of the object.
A. $\int_{-4}^{4} \int_{-\sqrt{16-x^{2}}}^{\sqrt{16-x^{2}}} \int_{-\sqrt{x^{2}+y^{2}}}^{\sqrt{32-y^{2}}} z d z d y d x$
B. $\int_{-4}^{4} \int_{-\sqrt{16-x^{2}}}^{\sqrt{16-x^{2}}} \int_{\sqrt{x^{2}+y^{2}}}^{\sqrt{32-y^{2}}} z d z d y d x$
C. $\int_{-2}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} \int_{-\sqrt{x^{2}+y^{2}}}^{\sqrt{32-y^{2}}} z d z d y d x$
D. $\int_{0}^{4} \int_{0}^{\sqrt{16-x^{2}}} \int_{\sqrt{x^{2}+y^{2}}}^{\sqrt{32-x^{2}}} z d z d y d x$
E. $\int_{-4}^{4} \int_{-\sqrt{16-x^{2}}}^{\sqrt{16-x^{2}}} \int_{\sqrt{x^{2}+y^{2}}}^{\sqrt{32-x^{2}-y^{2}}} x y d z d y d x$.
35. Do problem 34 in spherical coordinates.
A. $\int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{4}} \int_{0}^{\sqrt{32}} \rho^{3} \cos \varphi \sin \varphi d \rho d \varphi d \theta$
B. $\int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{4}} \int_{0}^{\sqrt{32}} \rho \cos \varphi \sin \varphi d \rho d \varphi d \theta$
C. $\int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{4}} \int_{0}^{\sqrt{32}} \rho^{3} \sin ^{2} \varphi d \rho d \varphi d \theta$
D. $\int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{2}} \int_{0}^{\sqrt{32}} \rho^{3} \cos \varphi \sin \varphi d \rho d \varphi d \theta$
E. $\int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{4}} \int_{0}^{\sqrt{32}} \rho \cos \varphi d \rho d \varphi d \theta$.
36. The double integral $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} y^{2}\left(x^{2}+y^{2}\right)^{3} d y d x$ when converted to polar coordinates becomes
A. $\int_{0}^{\pi} \int_{0}^{1} r^{9} \sin ^{2} \theta d r d \theta$
B. $\int_{0}^{\frac{\pi}{2}} \int_{0}^{1} r^{8} \sin ^{2} \theta d r d \theta$
C. $\int_{0}^{\pi} \int_{0}^{1} r^{8} \sin \theta d r d \theta$
D. $\int_{0}^{\frac{\pi}{2}} \int_{0}^{1} r^{8} \sin \theta d r d \theta$
E. $\int_{0}^{\frac{\pi}{2}} \int_{0}^{1} r^{9} \sin ^{2} \theta d r d \theta$.
37. Which of the triple integrals converts

$$
\int_{-2}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} \int_{\sqrt{x^{2}+y^{2}}}^{2} d z d y d x
$$

from rectangular to cylindrical coordinates?
A. $\int_{0}^{\pi} \int_{0}^{2} \int_{r}^{2} r d z d r d \theta$
B. $\int_{0}^{2 \pi} \int_{0}^{2} \int_{r}^{2} r d z d r d \theta$
C. $\int_{0}^{2 \pi} \int_{-2}^{2} \int_{r}^{2} r d z d r d \theta$
D. $\int_{0}^{\pi} \int_{0}^{2} \int_{r}^{2} r d z d r d \theta$
E. $\int_{0}^{\frac{2 \pi}{2}} \int_{-2}^{2} \int_{r}^{2} r d z d r d \theta$.
38. If D is the solid region above the $x y$-plane that is between $z=\sqrt{4-x^{2}-y^{2}}$ and $z=\sqrt{1-x^{2}-y^{2}}$, then $\iiint_{D} \sqrt{x^{2}+y^{2}+z^{2}} d V=$
A. $\frac{14 \pi}{3}$
B. $\frac{16 \pi}{3}$
C. $\frac{15 \pi}{2}$
D. 8π
E. 15π.
39. Determine which of the vector fields below are conservative, i. e. $\vec{F}=\operatorname{grad} f$ for some function f.

1. $\vec{F}(x, y)=\left(x y^{2}+x\right) \vec{i}+\left(x^{2} y-y^{2}\right) \vec{j}$.
2. $\vec{F}(x, y)=\frac{x}{y} \vec{i}+\frac{y}{x} \vec{j}$.
3. $\vec{F}(x, y, z)=y e^{z} \vec{i}+\left(x e^{z}+e^{y}\right) \vec{j}+(x y+1) e^{z} \vec{k}$.
A. 1 and 2
B. 1 and 3
C. 2 and 3
D. 1 only
E. all three
4. Let \vec{F} be any vector field whose components have continuous partial derivatives up to second order, let f be any real valued function with continuous partial derivatives up to second order, and let $\nabla=$ $\vec{i} \frac{\partial}{\partial x}+\vec{j} \frac{\partial}{\partial y}+\vec{k} \frac{\partial}{\partial z}$. Find the incorrect statement.
A. $\operatorname{curl}(\operatorname{grad} f)=\overrightarrow{0}$
B. $\operatorname{div}(\operatorname{curl} \vec{F})=0$
C. $\operatorname{grad}(\operatorname{div} \vec{F})=0$
D. curl $\vec{F}=\nabla \times \vec{F}$
E. $\operatorname{div} \vec{F}=\nabla \cdot \vec{F}$
5. A wire lies on the $x y$-plane along the curve $y=x^{2}, 0 \leq x \leq 2$. The mass density (per unit length) at any point (x, y) of the wire is equal to x. The mass of the wire is
A. $(17 \sqrt{17}-1) / 12$
B. $(17 \sqrt{17}-1) / 8$
C. $17 \sqrt{17}-1$
D. $(\sqrt{17}-1) / 3$
E. $(\sqrt{17}-1) / 12$
6. Evaluate $\int_{C} \vec{F} \cdot d \vec{r}$ where $\vec{F}(x, y)=y \vec{i}+x^{2} \vec{j}$ and C is composed of the line segments from (0,0) to (1,0) and from $(1,0)$ to $(1,2)$.
A. 0
B. $\frac{2}{3}$
C. $\frac{5}{6}$
D. 2
E. 3
7. Evaluate the line integral

$$
\int_{C} x d x+y d y+x y d z
$$

where C is parametrized by $\vec{r}(t)=\cos t \vec{i}+\sin t \vec{j}+\cos t \vec{k}$ for $-\frac{\pi}{2} \leq t \leq 0$.
A. 1
B. -1
C. $\frac{1}{3}$
D. $-\frac{1}{3}$
E. 0
44. Are the following statements true or false?

1. The line integral $\int_{C}\left(x^{3}+2 x y\right) d x+\left(x^{2}-y^{2}\right) d y$ is independent of path in the $x y$-plane.
2. $\int_{C}\left(x^{3}+2 x y\right) d x+\left(x^{2}-y^{2}\right) d y=0$ for every closed oriented curve C in the $x y$-plane.
3. There is a function $f(x, y)$ defined in the $x y$-plane, such that $\operatorname{grad} f(x, y)=\left(x^{3}+2 x y\right) \vec{i}+\left(x^{2}-y^{2}\right) \vec{j}$.
A. all three are false
B. 1 and 2 are false, 3 is true
C. 1 and 2 are true, 3 is false
D. 1 is true, 2 and 3 are false
E. all three are true
4. Evaluate $\int_{C} y^{2} d x+6 x y d y$ where C is the boundary curve of the region bounded by $y=\sqrt{x}, y=0$ and $x=4$, in the counterclockwise direction.
A. 0
B. 4
C. 8
D. 16
E. 32
5. If C goes along the x-axis from $(0,0)$ to $(1,0)$, then along $y=\sqrt{1-x^{2}}$ to $(0,1)$, and then back to $(0,0)$ along the y-axis, then $\int_{C} x y d y=$
A. $-\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} y d y d x$
B. $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} y d y d x$
C. $-\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} x d y d x$
D. $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} x d y d x$
E. 0
6. Evaluate $\int_{C} \vec{F} \cdot d \vec{r}$, if $\vec{F}(x, y)=\left(x y^{2}-1\right) \vec{i}+\left(x^{2} y-x\right) \vec{j}$ and C is the circle of radius 1 centered at $(1,2)$ and oriented counterclockwise.
A. 2
B. π
C. 0
D. $-\pi$
E. -2
7. Green's theorem yields the following formula for the area of a simple region R in terms of a line integral over the boundary C of R, oriented counterclockwise. Area of $R=\iint_{R} d A=$
A. $-\int_{C} y d x$
B. $\int_{C} y d x$
C. $\int_{C} x d x$
D. $\frac{1}{2} \int_{C} y d x-x d y$
E. $-\int x d y$
8. Evaluate the surface integral $\iint_{S} x d \sigma$ where S is the part of the plane $2 x+y+z=4$ in the first octant.
A. $8 \sqrt{6}$
B. $\frac{8}{3} \sqrt{6}$
C. $\frac{8}{3} \sqrt{14}$
D. $\frac{\sqrt{14}}{3}$
E. $\frac{\sqrt{10}}{3}$
9. If S is the part of the paraboloid $z=x^{2}+y^{2}$ with $z \leq 4, \vec{n}$ is the unit normal vector on S directed upward, and $\vec{F}(x, y, z)=x \vec{i}+y \vec{j}+z \vec{k}$, then $\iint_{S} \vec{F} \cdot \vec{n} d \sigma=$
A. 0
B. 8π
C. 4π
D. -4π
E. -8π
10. If $\vec{F}(x, y, z)=\cos z \vec{i}+\sin z \vec{j}+x y \vec{k}, S$ is the complete boundary of the rectangular solid region bounded by the planes $x=0, x=1, y=0, y=1, z=0$ and $z=\frac{\pi}{2}$, and \vec{n} is the outward unit normal on S, then $\iint_{S} \vec{F} \cdot \vec{n} d \sigma=$
A. 0
B. $\frac{1}{2}$
C. 1
D. $\frac{\pi}{2}$
E. 2
11. If $\vec{F}(x, y, z)=x \vec{i}+y \vec{j}+z \vec{k}, S$ is the unit sphere $x^{2}+y^{2}+z^{2}=1$ and \vec{n} is the outward unit normal on S, then $\iint_{S} \vec{F} \cdot \vec{n} d \sigma=$
A. -4π
B. $\frac{2 \pi}{3}$
C. 0
D. $\frac{4 \pi}{3}$
E. 4π
12. Evaluate the limit $\lim _{n \rightarrow \infty}\left[1+\frac{(-1)^{n}}{n}\right]$.
A. 0
B. 1
C. -1
D. 2
E. limit does not exist
13. Evaluate the limit $\lim _{n \rightarrow \infty}\left(\sqrt[n]{n}+\frac{1}{n!}\right)$.
A. 0
B. 1
C. e
D. $1 / e$
E. limit does not exist
14. If $s=\sum_{n=0}^{\infty} \frac{2^{n+1}}{3^{n}}$, then $s=$
A. 3
B. 6
C. 9
D. 2
E. $4 / 3$
15. If $L=\sum_{n=1}^{\infty} \frac{1}{2^{n}}+\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n}}$, then $L=$
A. $1 / 3$
B. $2 / 3$
C. 1
D. $4 / 3$
E. $5 / 3$
16. $\sum_{n=1}^{\infty} \frac{1}{\left(n^{2}+1\right)^{p}}$ converges when
A. $p>1$
B. $p \leq 1$
C. $p \geq 1$
D. $p>\frac{1}{2}$
E. $p \leq \frac{1}{2}$
17. $\sum_{n=1}^{\infty}\left(1+\frac{1}{n}\right)^{p}$ converges for
A. $p \leq 1$
B. $p>1$
C. $p<0$
D. $p>0$
E. no values of p
18. Which of the following series converge conditionally?
(i) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}$
(ii) $\sum_{n=2}^{\infty} \frac{(-1)^{n} n}{\ln n}$
(iii) $\sum_{n=1}^{\infty} \frac{(-1)^{n} n}{e^{n}}$
A. only (ii)
B. only (i) and (iii)
C. only (i) and (ii)
D. all three
E. none of them
19. Which of the following series converge?
(i) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{\frac{1}{4}}}$
(ii) $\sum_{n=1}^{\infty} \frac{n \text { ! }}{1 \cdot 3 \cdot 5 \cdots(2 n-1)}$
(iii) $\sum_{n=1}^{\infty} \frac{4}{3}\left(\frac{1}{2}\right)^{n}$
A. only (ii)
B. only (i) and (iii)
C. only (i) and (ii)
D. all three
E. none of them
20. The interval of convergence for the power series $\sum_{n=2}^{\infty} \frac{3^{n} x^{n}}{n \ln n}$ is
A. $-\frac{1}{3} \leq x<\frac{1}{3}$
B. $-\frac{1}{3}<x \leq \frac{1}{3}$
C. $0 \leq x \leq \frac{1}{3}$
D. $-1 \leq x \leq 2$
E. $-1<x<1$
21. Find the interval of convergence of the power series

$$
\sum_{n=0}^{\infty} \frac{n x^{n}}{2^{n}}
$$

A. $-\frac{1}{2}<x<\frac{1}{2}$
B. $-2<x<2$
C. $-2 \leq x \leq 2$
D. $-2<x \leq 2$
E. $-\infty<x<\infty$
63. The fourth term of the Maclaurin series for $\frac{x^{2}+3}{x-1}$ is
A. $-x^{3}$
B. $3 x^{3}$
C. $-3 x^{3}$
D. $-4 x^{3}$
E. $4 x^{3}$
64. The first three nonzero terms of the Maclaurin series for $f(x)=\left(1-x^{2}\right) \sin x$ are
A. $x-\frac{5}{6} x^{3}+\frac{31}{150} x^{5}$
B. $1-\frac{3}{2} x^{2}+\frac{13}{24} x^{4}$
C. $x-\frac{7}{6} x^{3}+\frac{31}{150} x^{5}$
D. $x^{2}-\frac{7}{6} x^{3}+\frac{1}{25} x^{5}$
E. $x-\frac{7}{6} x^{3}+\frac{21}{120} x^{5}$
65. The fourth term of the Taylor series for $f(x)=\ln x$ centered at $a=2$ is
A. $\frac{1}{6}(x-2)^{3}$
B. $\frac{1}{12}(x-2)^{3}$
C. $\frac{1}{24}(x-2)^{3}$
D. $-\frac{1}{3}(x-2)^{3}$
E. $-(x-2)^{3}$

ANSWERS

$1-\mathrm{C}, \quad 2-\mathrm{A}, \quad 3-\mathrm{B}, \quad 4-\mathrm{B}, \quad 5-\mathrm{A}, \quad 6-\mathrm{D}, \quad 7-\mathrm{B}, \quad 8-\mathrm{D}, \quad 9-\mathrm{E}, \quad 10-\mathrm{B}, \quad 11-\mathrm{A}, \quad 12-\mathrm{E}, \quad 13-\mathrm{B}, \quad 14-\mathrm{B}$, $15-\mathrm{D}, \quad 16-\mathrm{C}, \quad 17-\mathrm{E} \quad 18-\mathrm{D}, \quad 19-\mathrm{A}, \quad 20-\mathrm{C}, \quad 21-\mathrm{E}, \quad 22-\mathrm{A}, \quad 23-\mathrm{A}, \quad 24-\mathrm{B}, \quad 25-\mathrm{E}, \quad 26-\mathrm{B}, \quad 27-\mathrm{C}$, $28-\mathrm{B}, \quad 29-\mathrm{E}, \quad 30-\mathrm{A}, \quad 31-\mathrm{B}, \quad 32-\mathrm{D}, \quad 33-\mathrm{B}, ~ 34-\mathrm{B}, \quad 35-\mathrm{A}, \quad 36-\mathrm{E}, \quad 37-\mathrm{B}, \quad 38-\mathrm{C}, ~ 39-\mathrm{B}, \quad 40-\mathrm{C}$, $41-\mathrm{A}, \quad 42-\mathrm{D}, \quad 43-\mathrm{D}, \quad 44-\mathrm{E}, \quad 45-\mathrm{D}, \quad 46-\mathrm{B}, \quad 47-\mathrm{D}, \quad 48-\mathrm{A}, \quad 49-\mathrm{B}, \quad 50-\mathrm{E}, \quad 51-\mathrm{A}, \quad 52-\mathrm{E}, \quad 53-\mathrm{B}$ $54-\quad \mathrm{B}, 55-\mathrm{B}, \quad 56-\mathrm{E}, \quad 57-\mathrm{D}, \quad 58-\mathrm{E}, \quad 59-\mathrm{E}, \quad 60-\mathrm{D}, \quad 61-\mathrm{A}, \quad 62-\mathrm{B}, \quad 63-\mathrm{D}, \quad 64-\mathrm{E}, \quad 65-\mathrm{C}$

