1. Prove that \(\sum_{k=1}^{n} (2k - 1) = n^2 \) for all \(n \in \mathbb{N} \).

2. Using the principle of mathematical induction, prove the following extensions of De Morgan’s Laws for all \(n \in \mathbb{N} \):

 (a) \(\left(\bigcup_{k=1}^{n} A_k \right)^c = \bigcap_{k=1}^{n} A_k^c \)
 (b) \(\left(\bigcap_{k=1}^{n} A_k \right)^c = \bigcup_{k=1}^{n} A_k^c \)

 Is it true that \(\bigcup_{k=1}^{\infty} A_k \) \(= \bigcap_{k=1}^{\infty} A_k^c \)? Can you use induction here?

3. Prove Bernoulli’s Inequality: If \(x > -1 \), then \((1 + x)^m \geq 1 + mx \) for all \(m \in \mathbb{N} \).

4. Page 18: Exercise 1.3.4, Exercise 1.3.5(a), Exercise 1.3.6 (over \(\mathbb{Q} \)), Exercise 1.3.9(a)(b)(c).