MA 35100

HW \# 3 - due Monday, September 16

1. Let $A=\left[\begin{array}{rrrr}1 & 0 & -2 & 1 \\ 2 & 0 & -4 & 0 \\ -1 & 0 & 2 & 1\end{array}\right]$.
(a) Does the vector $\mathbf{b}=\left[\begin{array}{r}1 \\ 8 \\ -7\end{array}\right]$ belong to the span of the columns of A ?

If so, write out the vector \mathbf{b} as an explicit linear combination of columns of A.
(b) Does the vector $\mathbf{b}=\left[\begin{array}{l}1 \\ 8 \\ 7\end{array}\right]$ belong to the span of the columns of A ?

If so, write out the vector \mathbf{b} as an explicit linear combination of columns of A.
(c) What condition on the constants a, b, c guarantees that the vector $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ will belong to the span of the columns of A ?

Remark: Test your answer here with what you obtained in parts (a) and (b) above. Your answer in part (c) tells you precisely which vectors $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ belong to the span of the columns of A and those that do not.
(d) Does the vector $\mathbf{b}=\left[\begin{array}{llll}1 & 0 & -2 & 5\end{array}\right]$ belong to the span of the rows of A ?
2. Which sets are linearly independent and which are linearly dependent?
(a) $S=\left\{\left[\begin{array}{l}2 \\ 3\end{array}\right],\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{r}-1 \\ 2\end{array}\right]\right\}$
(b) $S=\left\{\left[\begin{array}{lll}1 & 2 & -1\end{array}\right],\left[\begin{array}{lll}2 & 2 & 1\end{array}\right],\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]\right\}$
(c) $S=\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}2 & 2 \\ 2 & 2\end{array}\right],\left[\begin{array}{rr}1 & 3 \\ -2 & 0\end{array}\right]\right\}$
(d) $S=\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}2 & 2 \\ 2 & 2\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]\right\}$
(e) $S=\left\{(1+x)^{2},\left(1+x^{2}\right),\left(1-2 x+x^{2}\right)\right\}$
(f) $S=\left\{\sin ^{2} x, 2,3 \cos ^{2} x\right\}$.
3. Page 108: T/F Question: \# 2.2(a)(b)(c).
4. If $\mathbf{u}, \mathbf{w} \in \operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{k}\right\}$, show that $\mathbf{u}+\mathbf{w} \in \operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{k}\right\}$.

