MA 35100

HW \# 5-due Friday, October 4

1. Page 85: T/F Questions: \# 1.33, 1.34, 1.35.
2. Which subsets of V are actually subspaces of V ?
(a) $W=\left\{\left[\begin{array}{l}a \\ 0 \\ b\end{array}\right]\right.$: where $\left.a b=0\right\} \quad\left(V=\mathbb{R}^{3}\right)$
(b) $W=\left\{y(x) \in \mathcal{C}^{2}([0,1]): y^{\prime \prime}-4 y=0\right\}$
($V=\mathcal{C}^{2}\left([0,1]=\right.$ set of all functions $y(x)$ for which $y, y^{\prime}, y^{\prime \prime}$ are continuous on $[0,1]$.)
3. Find a minimal spanning set for the following subspaces:
(a) $W=\left\{\left[\begin{array}{ccc}p & 2 p & 3 q \\ q & q & (2 p-q)\end{array}\right] \in M(2,3): p, q \in \mathbb{R}\right\}$.
(b) $W=\left\{p(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3} \in \mathcal{P}_{3}: p(1)=p(-1)\right\}$.
