## MA 35100

## HW \# 7 - due Friday, October 25

1. Which subsets $W$ of $V$ are subspaces of $V$ :
(a) $W=\{A \in M(2,3): \operatorname{Rank}(A)=1\}$;
(b) $W=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{r}2 \\ -1\end{array}\right],\left[\begin{array}{l}0 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 2\end{array}\right],\right\} ; V=\mathbb{R}^{2}$
(c) $W=\left\{f(x) \in \mathcal{C}^{2}(\mathbb{R}): f^{\prime \prime}(x)-x f(x)=0\right\} ; \quad V=\mathcal{C}^{2}(\mathbb{R})$
(d) $W=\left\{\left[\begin{array}{l}x \\ y \\ z\end{array}\right]: x+y+z=100\right\} ; V=\mathbb{R}^{3}$
(e) $W=\left\{p(x)=a+b x^{2}+c x^{3} \in \mathcal{P}_{3}: p(1)=p^{\prime \prime}(1)\right\} ; \quad V=\mathcal{P}_{3}$
2. Find a basis for the subspace $W \subset \mathbb{R}_{3}$ given by

$$
W=\operatorname{Span}\left\{\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
1 & -1 & 3
\end{array}\right],\left[\begin{array}{lll}
2 & -1 & 5
\end{array}\right]\right\}
$$

3. TRUE/FALSE Questions:
(a) If $A$ is a $4 \times 7$ matrix then Nullity $(A) \leq 3$.
(b) A basis for the subspace $W=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 0 \\ 3\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 2 \\ 2\end{array}\right]\right\}$ is $\mathcal{B}=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 0 \\ 3\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right\}$.
(c) There is a set of 5 matrices that will span $M(2,3)$.
(d) If $A$ is a $3 \times 5$ matrix, then $\operatorname{Nullity}(A)=\operatorname{Nullity}\left(A^{t}\right)$.
4. Let $A=\left[\begin{array}{rrrrr}0 & 1 & 2 & 1 & 2 \\ 0 & -1 & -2 & 1 & -1 \\ 0 & 3 & 6 & 1 & 5\end{array}\right]$. Find $\operatorname{Null}(A), \operatorname{Null}\left(A^{t}\right)$ and then a basis for each.
