MA 35100

HW # 7 - due Friday, October 25

1. Which subsets W of V are subspaces of V:

(a)
$$W = \{A \in M(2,3) : \operatorname{\mathbf{Rank}}(A) = 1\};$$

(b) $W = \operatorname{\mathbf{Span}}\left\{ \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} 2\\-1 \end{bmatrix}, \begin{bmatrix} 0\\0 \end{bmatrix}, \begin{bmatrix} 2\\2 \end{bmatrix}, \right\}; V = \mathbb{R}^2$
(c) $W = \{f(x) \in \mathcal{C}^2(\mathbb{R}) : f''(x) - xf(x) = 0\}; V = \mathcal{C}^2(\mathbb{R})$
(d) $W = \left\{ \begin{bmatrix} x\\y\\z \end{bmatrix} : x + y + z = 100 \right\}; V = \mathbb{R}^3$
(e) $W = \left\{ p(x) = a + bx^2 + cx^3 \in \mathcal{P}_3 : p(1) = p''(1) \right\}; V = \mathcal{P}_3$

2. Find a basis for the subspace $W \subset \mathbb{R}_3$ given by

$$W = \mathbf{Span} \left\{ \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & -1 & 3 \end{bmatrix}, \begin{bmatrix} 2 & -1 & 5 \end{bmatrix} \right\}$$

3. TRUE/FALSE Questions:

(a) If A is a 4×7 matrix then **Nullity** $(A) \leq 3$.

(b) A basis for the subspace
$$W = \mathbf{Span} \left\{ \begin{bmatrix} 1\\0\\3 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 2\\2\\2 \end{bmatrix} \right\}$$
 is $\mathcal{B} = \mathbf{Span} \left\{ \begin{bmatrix} 1\\0\\3 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\}$.

- (c) There is a set of 5 matrices that will span M(2,3).
- (d) If A is a 3×5 matrix, then Nullity (A) = Nullity (A^t) .

4. Let $A = \begin{bmatrix} 0 & 1 & 2 & 1 & 2 \\ 0 & -1 & -2 & 1 & -1 \\ 0 & 3 & 6 & 1 & 5 \end{bmatrix}$. Find **Null**(A), **Null**(A^t) and then a basis for each.