MA 35100

HW \# 9 - due Monday, November 11

1. TRUE/FALSE Questions

(a) If A is a 4×4 matrix and $\operatorname{Col}(A)=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 0\end{array}\right]\right\}$, then $\operatorname{Rank}(A)=2$.
(b) $\mathcal{B}=\left\{(x+1),\left(x^{2}+x\right),\left(x^{2}-1\right)\right\}$ is a basis for \mathcal{P}_{2}.
(c) If A is a 3×7 matrix, then $\operatorname{Nullity}(A) \geq 4$.
(d) $W=\left\{\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \in \mathbb{R}^{3}: y=8 x\right\}$ is NOT a subspace.
(e) If $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ is a LT with $L\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]=\left[\begin{array}{r}1 \\ -3\end{array}\right]$ and $L\left[\begin{array}{l}3 \\ 3 \\ 3\end{array}\right]=\left[\begin{array}{l}0 \\ 2\end{array}\right]$, then $L\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right]=\left[\begin{array}{r}1 \\ -1\end{array}\right]$.
(f) If $\mathbf{v}=\left[\begin{array}{r}2 \\ -3\end{array}\right]$ and $\mathcal{B}=\left\{\left[\begin{array}{l}2 \\ 3\end{array}\right],\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\} \Longrightarrow[\mathbf{v}]_{\mathcal{B}}=\left[\begin{array}{r}-5 \\ 12\end{array}\right]$.
2. Find $\left(\frac{1}{12} A\right)^{-1}$ if $A=\left[\begin{array}{rrr}1 & -1 & 2 \\ 1 & 0 & 0 \\ 2 & 3 & 0\end{array}\right]$.
3. Let $T: \mathcal{P}_{2} \longrightarrow \mathbb{R}^{2}$ be defined by

$$
T(p(x))=\left[\begin{array}{c}
p(1) \\
p^{\prime}(1)
\end{array}\right], \quad \text { i.e. } \quad T\left(a+b x+c x^{2}\right)=\left[\begin{array}{c}
(a+b+c) \\
(b+2 c)
\end{array}\right] .
$$

(i) Show that T is a linear transformation (LT).
(ii) Find the matrix representation M for T (Standard basis for \mathcal{P}_{2} and \mathbb{R}^{2}.)
4. $\left|\begin{array}{ccc}10 & 20 & 50 \\ 20 & 20 & 20 \\ 4 & 0 & -4\end{array}\right|=$?

