MA 35100

HW # 10 - due Monday, November 25

- **1. Page 249:** #4.1(h)(j).
- **2.** Page 259: #4.15.
- **3.** If $A = \begin{bmatrix} a & a & 1 \\ 1 & 2 & b \\ 2 & 2 & 0 \end{bmatrix}$, for what scalars a, b is A singular?
- **4.** Let A be an $n \times n$ matrix.
 - (a) If $\det(A \lambda I) = 0$, for a scalar λ and $B = QAQ^{-1}$, show that $\det(B \lambda I) = 0$,
 - (b) If $det(A \lambda I) = 0$, for a scalar λ , show that $det(A^2 \lambda^2 I) = 0$,
- **5.** If A is a 2×2 matrix and $\mathbf{v}_1, \mathbf{v}_2$ are two linearly independent non-zero vectors in \mathbb{R}^2 satisfying $A\mathbf{v}_1 = 3\mathbf{v}_1$ and $A\mathbf{v}_2 = -4\mathbf{v}_2$, compute det A.
- **6.** Let $B = \begin{bmatrix} 1 & 2 \\ 3 & 0 \end{bmatrix}$ and let $T: M(2,2) \longrightarrow M(2,2)$ be the transformation given by T(A) = AB.
 - (a) Show T is linear.
 - (b) Compute the determinant of the matrix M for T.
- 7. If A and B are 2×2 matrices with |A| = 3 and $det(B^2) = 8$, compute

$$\det\left\{-5A^2\left(\frac{1}{2}AB^T\right)^{-1}\operatorname{adj}(A)\right\}.$$

- 8. Page 268: #4.36.
- **9.** Let $T : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ be the (nonlinear) transformation $T(\rho, \phi, \theta) = (x(\rho, \phi, \theta), y(\rho, \phi, \theta), z(\rho, \phi, \theta))$, where

$$x = \rho \sin \phi \cos \theta$$
$$y = \rho \sin \phi \sin \theta$$
$$z = \rho \cos \phi$$

Compute the Jacobian determinant $\left|\frac{\partial(x, y, z)}{\partial(\rho, \phi, \theta)}\right|$ of the transformation T.