MA 35100

HW \# 10 - due Monday, November 25

1. Page 249: \#4.1(h)(j).
2. Page 259: \#4.15.
3. If $A=\left[\begin{array}{ccc}a & a & 1 \\ 1 & 2 & b \\ 2 & 2 & 0\end{array}\right]$, for what scalars a, b is A singular?
4. Let A be an $n \times n$ matrix.
(a) If $\operatorname{det}(A-\lambda I)=0$, for a scalar λ and $B=Q A Q^{-1}$, show that $\operatorname{det}(B-\lambda I)=0$,
(b) If $\operatorname{det}(A-\lambda I)=0$, for a scalar λ, show that $\operatorname{det}\left(A^{2}-\lambda^{2} I\right)=0$,
5. If A is a 2×2 matrix and $\mathbf{v}_{1}, \mathbf{v}_{2}$ are two linearly independent non-zero vectors in \mathbb{R}^{2} satisfying $A \mathbf{v}_{1}=3 \mathbf{v}_{1}$ and $A \mathbf{v}_{2}=-4 \mathbf{v}_{2}$, compute $\operatorname{det} A$.
6. Let $B=\left[\begin{array}{ll}1 & 2 \\ 3 & 0\end{array}\right]$ and let $T: M(2,2) \longrightarrow M(2,2)$ be the transformation given by $T(A)=A B$.
(a) Show T is linear.
(b) Compute the determinant of the matrix M for T.
7. If A and B are 2×2 matrices with $|A|=3$ and $\operatorname{det}\left(B^{2}\right)=8$, compute

$$
\operatorname{det}\left\{-5 A^{2}\left(\frac{1}{2} A B^{T}\right)^{-1} \operatorname{adj}(A)\right\}
$$

8. Page 268: \#4.36.
9. Let $T: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$ be the (nonlinear) transformation $T(\rho, \phi, \theta)=(x(\rho, \phi, \theta), y(\rho, \phi, \theta), z(\rho, \phi, \theta))$, where

$$
\left\{\begin{array}{l}
x=\rho \sin \phi \cos \theta \\
y=\rho \sin \phi \sin \theta \\
z=\rho \cos \phi
\end{array}\right.
$$

Compute the Jacobian determinant $\left|\frac{\partial(x, y, z)}{\partial(\rho, \phi, \theta)}\right|$ of the transformation T.

