$\underline{\underline{\text { Homework Set \# }} 1}$

1. (§1.1) Page 18: \# 13, 16, 21, 37.
2. If \mathbf{u} and \mathbf{v} are vectors in \mathbb{R}^{3}, prove the following:
(a) Parallelogram Law: $\|\mathbf{u}+\mathbf{v}\|^{2}+\|\mathbf{u}-\mathbf{v}\|^{2}=2\|\mathbf{u}\|^{2}+2\|\mathbf{v}\|^{2}$
(b) Polarization Identity: $\|\mathbf{u}+\mathbf{v}\|^{2}-\|\mathbf{u}-\mathbf{v}\|^{2}=4(\mathbf{u} \cdot \mathbf{v})$
3. Prove the converse of the Pythagorean Theorem as follows:

Suppose the sides of a triangle are the vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ (as shown below). If $\|\mathbf{a}\|^{2}+\|\mathbf{b}\|^{2}=\|\mathbf{c}\|^{2}$, prove that $\mathbf{a} \cdot \mathbf{b}=0$ (i.e., the triangle must be a right triangle).

4. (81.2) Page 29: \# 20, 26.
5. (§1.3) Page 49: \# 4, 6, 11, 29, 33, 34.
6. Find the area of the polygon Ω shown here:

7. The line through the points $(3,2,1)$ and $(5,1,2)$ intersects the plane $x+y+z=14$ at what point?
8. The plane containing the points $P(1,1,1), Q(2,0,-4)$, and $R(1,2,3)$ intersects the x-axis at what point?
9. Let $A=\left[\begin{array}{ll}1 & 1 \\ 2 & 2\end{array}\right]$. Compute A^{2} and A^{3}. Use mathematical induction to prove that $A^{n}=3^{n-1} A$ for any positive integer n.

