1. (§2.1) Page 85: \# 3(a), 4(a), 5(a), 6 .
2. Sketch the graph of the function $z=f(x, y)=\frac{1}{\sqrt{x^{2}+y^{2}}}$ using information from its level curves and various sections. This graph is sometimes called "Gabriel's Horn."
3. (§2.1) Page 87: \# 29, 30 .

Solutions
11 page 86 \#3(a): $f(x, y)=x^{2}-y^{2}=c \quad(c=0,1,-1)$

$$
f(x)=0 \Leftrightarrow x^{2}-y^{2}=0 \Leftrightarrow x^{2}=y^{2} \Leftrightarrow|x|=|y| \text {, so iii }
$$

$f(x)=1 \Leftrightarrow x^{2}-y^{2}=1$ in lenpertola opening along x-axis, no $i i$
$f(x)=-1 \Leftrightarrow x^{2}-y^{2}=-1, y^{2}-x^{2}=1$ is heppatola opening along y-axis
page 85-4(a): $f(x, y)=(x-y)^{2}=c \quad(c=0,1,4)$
This i

$$
\begin{aligned}
& f(x)=0 \Leftrightarrow(x-y)^{2}=0 \Leftrightarrow x=y \therefore \text { iii } \\
& f(x)=1 \Leftrightarrow(x-y)^{2}=1 \Leftrightarrow|x-y|=1 \text { so } \\
& \therefore y=x-1 \text { or } y=x+1
\end{aligned}
$$

Hence $i i$
$f(x)=4 \Leftrightarrow(x-y)^{2}=4 \Leftrightarrow|x-y|=2$ and pit as above $(x-y)= \pm 2$
so $y=x-2$ or $y=x+2$
Hence

Doge 85 - $5(a): \quad f(x, y)=x^{3}-y$
level cums are $f(x, y)=C$
So $\quad x^{3}-y=c \Rightarrow y=x^{3}-c$
\therefore When $C=-1,0,1$ we git these three curves:

page 85 \#6: $z=f(x, y)=9 x^{2}+y^{2}$
(a) level curves $f(x, y)=C \Rightarrow 9 x^{2}+y^{2}=C$. Clearly $C \geq 0$ and level curve $f(x, y)=0$ is the point $(0,0)$. Suppose $C>0$, then $\frac{x^{2}}{\left(\frac{c}{9}\right)}+\frac{y^{2}}{c}=1$ are ellipses witt major axis along y-axis.

(b) Sections of graph off in planes $x=-1, x=0, x=1$

$$
z=9 x^{2}+y^{2}
$$

$\{x=k\} \cap$ graph f is $z=9 k^{2}+y^{2}$

$\left(\operatorname{con}^{\prime} d\right)$
page 85 \# $6\left(\right.$ cont $\left.^{-1} d\right)$
(c) Sectuons im planes $y=-1, y=0, y=1 ; z=9 x^{2}+y^{2}$
so $\{y=k\} \cap$ graph f is $z=9 x^{2}+k^{2}$

d) Graph of $z=f(x, y)=9 x^{2}+y^{2}$

Sevel cumes
Gruph of f

$$
\Rightarrow z=9 x^{2}+y^{2}
$$

$2 z=f(x, y)=\frac{1}{\sqrt{x^{2}+y^{2}}}$
(note $0 \lll \infty$)
$x^{2}+y^{2}=\frac{1}{c^{2}}$ circles bush center $(0,0)$, radius $\frac{1}{c}$.
Section. $\{x=0\} \cap$ graph $f ; s z=\frac{1}{\sqrt{y^{2}}}=\frac{1}{|y|}$. Thus,

Level curves

3 page 87\#29: $z^{2}=y^{2}+4=$ is a n inpelbola in the $y z$-plane: $z^{2}-y^{2}=4$

Horvever, in \mathbb{R}^{3} There is no restinition on x and hence $\{x=k\} \cap$ graph is always the same engperbola. This is a "generalized cylinder":

page 87\#30: $x^{2}+y^{2}-2 x=0$, complete the stare to got $(x-1)^{2}+y^{2}=1$. In $x y$ plane this is a aisle

But in \mathbb{R}^{3}, since therese no restriction on z, this is a cylinder:

