## Homework Set \# 3

1. (§2.2) Page 103: \# 8, 12(a)(b).
2. If $f(x, y)=(2 x, 3 \cos y, \ln x)$ and $g(x, y)=\left(x^{2}+y^{2},-2 x y\right)$, then find $f \circ g$ and $g \circ f$, if possible. Compute $f(g(1,0))$ and $g(f(1,0))$, if possible.
3. (§2.3) Page 115: \# 3(a)(c), 5, 10(a)(c), 11, 12, 16(a).
4. If $w=\frac{r^{2}+s^{2}}{r^{2}-s^{2}}$, show that $r \frac{\partial w}{\partial r}+s \frac{\partial w}{\partial s}=0$, for all $r \neq s$.
5. Suppose $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{3}$ is the linear mapping $f(\mathbf{x})=A \mathbf{x}$, where $A$ is the $3 \times 2$ matrix $A=\left[\begin{array}{ll}a_{1} & a_{2} \\ b_{1} & b_{2} \\ c_{1} & c_{2}\end{array}\right]$. Compute the matrix of partials $D f$.
Note: $f\left(x_{1}, x_{2}\right)=A\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$, and write RHS as a row.
