- **1.** (§2.2) Page 103: # 8, 12(a)(b).
- 2. If $f(x,y) = (2x, 3\cos y, \ln x)$ and $g(x,y) = (x^2 + y^2, -2xy)$, then find $f \circ g$ and $g \circ f$, if possible. Compute f(g(1,0)) and g(f(1,0)), if possible.
- **3.** (§2.3) Page 115: # 3(a)(c), 5, 10(a)(c), 11, 12, 16(a).
- 4. If $w = \frac{r^2 + s^2}{r^2 s^2}$, show that $r \frac{\partial w}{\partial r} + s \frac{\partial w}{\partial s} = 0$, for all $r \neq s$.
- 5. Suppose $f : \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ is the *linear* mapping $f(\mathbf{x}) = A\mathbf{x}$, where A is the 3×2 matrix $A = \begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \\ c_1 & c_2 \end{bmatrix}$.

Compute the matrix of partials Df.

<u>Note</u>: $f(x_1, x_2) = A \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, and write RHS as a row.