Homework Set \# 4

1. (§2.4) Page 123: \# 1, 13, 17, 19, 20, 23.
2. (§2.5) Page 132: \# 7, 10(a), 35 .
3. If $g(x, y, z)=\left(x, x+y, x^{2}+z, z\right)$ and $f(x, y, z, w)=\left(x^{2}+z, y^{2}-w\right)$, then $D(f \circ g)(1,1,1)=$?
4. If $w=\sqrt{x^{2}+y^{2}}$, with $\left\{\begin{array}{l}x=3+s t \\ y=s^{2}-2 t\end{array}\right.$, compute $\frac{\partial w}{\partial s}$ when $x=3$ and $y=-4$.
5. If $w=f\left(x^{2}-y^{2}, e^{x}\right)$, where $\frac{\partial f(u, v)}{\partial u}=\frac{1}{u}$ and $\frac{\partial f(u, v)}{\partial v}=\tan v$, express $\frac{\partial w}{\partial x}$ as a function of x and y.
6. The voltage V in a simple electric circuit is slowly decreasing as the battery wears out and the resistance R is slowly increasing as the resistor heats up. Given that $\frac{d V}{d t}=-0.01 \mathrm{~V} / \mathrm{sec}$ and $\frac{d R}{d t}=0.03 \Omega / \mathrm{sec}$, find the rate of change of the current I when $R=400 \Omega$ and $V=32$ volts.
Remark: Ohm's Law: $V=I R$
