Homework Set \# 5

1. (§2.5) Page 132: \# 5, 13(a).
2. (§2.6) Page 142: \# 1, 2(b), 6, 8(a)(b), 9(a), 22(a)(b), 31.
3. Given the following equation relating x, y, and z, answer the questions below:

$$
y^{3}+x^{2}-y z^{3}=4 x z+12 \quad(\#)
$$

(a) If $z=z(x, y)$ is defined implicitly by (\#), compute $\frac{\partial z}{\partial y}$.
(b) If $y=y(x, z)$ is defined implicitly by (\#), compute $\frac{\partial y}{\partial x}$.
(c) Find an equation of the tangent plane to the surface defined by (\#) at the point $\left(x_{0}, y_{0}, z_{0}\right)=(-2,0,1)$.
4. Let $f(x, y, z)=x^{2} y+x e^{-z}$ and $\mathbf{c}(t)=\left(t^{2}+t, t^{-1}, t-1\right)$.
(a) Find the rate of change of f along the path \mathbf{c} at $t=1$.
(b) Find the directional derivative of f in the direction of the tangent to the path \mathbf{c} at $t=1$.
5. Compute the directional derivative of $f(x, y, z)=x^{2} y+x e^{-z}+10$ at $(1,-2,0)$ in the direction from $(1,-2,0)$ towards the origin. Is the function f increasing or decreasing?

