Homework Set \# 7

1. Maximize $f(x, y, z)=z-2 x+y$ subject to the two constraints $x^{2}+y^{2}=8$ and $y-z=1$.
2. Given the system of equations $\left\{\begin{array}{l}x+2 z+t^{2}+u^{2}+e^{2 y}=5 \\ x^{2}+u+z+t y+y^{3}=0\end{array}\right.$, is it possible to solve for the functions $u=u(x, z, t)$ and $y=y(x, z, t)$ in a neighborhood of $\left(x_{0}, y_{0}, z_{0}, t_{0}, u_{0}\right)=(0,0,1,1,-1) ?$
3. Consider the lamina (thin plate in \mathbb{R}^{2}) bounded below by $y=x^{2}-1$ and bounded above by $y=3$. If the temperature at (x, y) is $T(x, y)=x y-x^{2}+10$, where is the coldest temperature on the plate? What is this coldest temperature?
4. (§4.1) Page 227: \# 23.
5. Find the length of these curves:
(a) $\mathbf{r}(t)=(2 t) \mathbf{i}+t^{2} \mathbf{j}+\frac{1}{3} t^{3} \mathbf{k}, \quad 0 \leq t \leq 1$.
(b) $y=\frac{1}{3} x^{\frac{3}{2}}$ from $(0,0)$ to $(9,9)$.
6. If $f, g, \phi: \mathbb{R} \longrightarrow \mathbb{R}$ are C^{1} real-valued functions and $\mathbf{c}(t)=f(t) \mathbf{i}+g(t) \mathbf{j}$, prove that

$$
\frac{d}{d t}(\phi(t) \mathbf{c}(t))=\phi(t) \mathbf{c}^{\prime}(t)+\phi^{\prime}(t) \mathbf{c}(t)
$$

